

B.Tech-Electrical and Electronics Engineering(E.E.E)

Course Structure

&

SYLLABUS

(2020-21 academic year)

(NECR B.Tech 20)

(w.e.f AY: 2020-21)

NARAYANA ENGINEERING COLLEGE::NELLORE

INSTITUTE VISION & MISSION

VISION

 To be one of the nation's premier Institutions for Technical and Management Education and a key contributor for Technological and Socio-economic Development of the Nation.

MISSION

- To produce technically competent Engineers and Managers by maintaining high academic standards, world class infrastructure and core instructions.
- To enhance innovative skills and multi disciplinary approach of students through well experienced faculty and industry interactions.
- To inculcate global perspective and attitude of students to face real world challenges by developing leadership qualities, lifelong learning abilities and ethical values.

Department of E.E.E -

(Electrical and Electronics Engineering)

DEPARTMENT VISION & MISSION

VISION OF THE DEPARTMENT

To impart knowledge in the field of Electrical and Electronics Engineering to meet the technical challenges of industry and society with strong innovative skills, leadership qualities and ethics.

MISSION OF THE DEPARTMENT

M1. To provide standard training and effective teaching learning process to the students by using the state-of-the-art laboratories, core instruction and efficient faculty.

M2. To enhance competent, innovative and technical skills amongst the students through training programs by industry and external participation.

M3. To inculcate leadership qualities, ethical values and lifelong learning skills in learners to serve the society and nation for overall development through value based education.

PEOs, POs, PSOs

POs

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use researchbased knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the

professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PEO 1: To solve composite problems using mathematics, basic sciences and engineering principles in the domains of testing, design and manufacturing.

PEO 2: To achieve higher positions in their profession by demonstrating leadership qualities, research and innovative abilities.

PEO 3: To contribute in the field of Electrical and Electronics Engineering to find solutions for societal problems through their lifelong learning skills and ethical values.

PSOs

PSO_1: Provide alternate solutions to address the problems with specific requirements in the field of Electrical and Electronics Engineering.

PSO_2: Be ready to work professionally in relevant industries like power systems, control systems and software industries

NARAYANA ENGINEERING COLLEGE::NELLORE

DEPARTMENT OF ELECTRICAL & ELETRONICS ENGINEERING

Course Structure for B.Tech E.E.E w.e.f AY: 2020-21

Subject	Category	Course Title		Contact Periods per week Credits		Credits	Schem N	ne of Examination Max. Marks		
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20MA1001	BS	Algebra and Calculus	3	1	0	4	4	40	60	100
20PH1001	BS	Applied Physics	3	0	0	3	3	40	60	100
20ES1001	ES	Problem Solving and Programming	3	0	0	3	3	40	60	100
20EN1001	HS	English	2	0	0	2	2	40	60	100
20PH1501	BS	Applied Physics Lab	0	0	3	3	1.5	40	60	100
20ES1501	ES	Electrical Engineering Workshop	0	0	2	2	1	40	60	100
20ES1505	ES	Engineering & IT Workshop	0	0	4	4	2	40	60	100
20ES1506	ES	Problem Solving and Programming Lab	0	0	3	3	1.5	40	60	100
20EN1501	HS	English Language Lab	0	0	3	3	1.5	40	60	100
20MC8001	MC	Mandatory course I :Induction Program					Induction P	rogram		
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester 20 Points							
		Total	11	11 1 18 30			19.5	360	540	900

SEMESTER I

SEMESTER II

Subject	Category	Course Title	Co	ntact	Perio week	ods per	Credits	Schem N	e of Exam Iax. Mark	ination s
Code	Curregory		L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20MA1003	BS	Vector Calculus Complex Variables and Transforms	3	1	0	4	4	40	60	100
20CH1001	BS	Chemistry	3	0	0	3	3	40	60	100
20ES1002	ES	Basic Electrical Circuits	3	0	0	3	3	40	60	100
20ES1007	ES	Introduction to Python Programming	2	0	0	2	2	40	60	100
20CH1501	BS	Chemistry Lab	0	0	3	3	1.5	40	60	100
20ES1507	ES	Basic Electrical Circuits Lab	0	0	2	2	1	40	60	100
20ES1504	ES	Engineering Graphics Lab	0	1	4	5	3	40	60	100
20ES1510	ES	Introduction to Python Programming Lab	0	0	2	2	1	40	60	100
20EN1502	HS	Oral Communication skills lab	0	0	2	2	1	40	60	100
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Seme			the Seme	lester 20 Point		20 Points	-
		Total	11	2	16	29	19.5	360	540	900

NECR B.Tech 20

SEMESTER III

Subject	Category	Course Title	Contact Periods per week C		Credits	Scheme of Examination Max. Marks				
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20MA1006	BS	Probability Statistics and Numerical Methods	3	0	0	3	3	40	60	100
20ES1011	ES	Data Structures	2	0	2	4	3	40	60	100
20ES1013	ES	Electronic Devices and Circuits	3	0	0	3	3	40	60	100
20EE2001	РС	Electrical Circuit Analysis	3	0	0	3	3	40	60	100
20EE2002	РС	DC Machines and Transformers	3	0	0	3	3	40	60	100
20ES1516	ES	Electronic Devices and Circuits Lab	0	0	3	3	1.5	40	60	100
20EE2501	PC	DC Machines and Transformers Lab	0	0	3	3	1.5	40	60	100
20EE2502	PC	Electrical Circuits and Simulation Lab	0	0	3	3	1.5	40	60	100
20CD6001	SC	Career competency Development I	0	0	2	2	1	40	60	100
20CC6001	SC	Value added course/Certificate course I	0	1	0	1	1	40	60	100
20MC8002 -12	MC	Mandatory course II	2	0	0	2	0			
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester			ster	20 Points			
		Total	16	1	16	33	21.5	400	600	1000

NECR B.Tech 20

SEMESTER IV

Subject	Category	Course Title		Contact Periods per week Cr		Credits	Schem N	e of Examination Aax. Marks		
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20EE2003	РС	Analog Electronic Circuits	2	0	0	2	2	40	60	100
20EE2004	РС	Electro Magnetic Fields	3	0	0	3	3	40	60	100
20EE2005	РС	Induction Motors and Synchronous Machines	3	0	0	3	3	40	60	100
20EE2006	РС	Linear Control Systems	3	0	0	3	3	40	60	100
20EE2007	РС	Power Generation & Transmission	3	0	0	3	3	40	60	100
-	OE	Open elective I	3	0	0	3	3	40	60	100
20EE2503	PC	Analog Electronics and Simulation Lab	0	0	2	2	1	40	60	100
20EE2504	PC	Induction Motors and Synchronous Machines Lab	0	0	3	3	1.5	40	60	100
20CD6002	SC	Career competency Development II	0	0	2	2	1	40	60	100
20CC6002	SC	Value added course/Certificate course II	0	1	0	1	1	40	60	100
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester 20 Poi		20 Points					
		Total	17	1	10	28	21.5	400	600	1000

NECR B.Tech 20

SEMESTER V

Subject	Category	Course Title	Contact Periods per week Cr		Contact Periods per weekScheme of Exa Max. MaCreditsCredits		e of Exami Iax. Mark	ination s		
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20EE2008	РС	Digital Electronics and logic design	3	0	0	3	3	40	60	100
20EE2009	РС	Power Distribution & Distributed Generation	3	0	0	3	3	40	60	100
20EE2010	РС	Power Electronics	3	0	0	3	3	40	60	100
-	OE	Open elective II	3	0	0	3	3	40	60	100
20EE4001 -05	PE	Professional Elective I	3	0	0	3	3	40	60	100
20EE2505	PC	Control Systems and Simulation Lab	0	0	3	3	1.5	40	60	100
20EE2506	РС	Power Electronics & Simulation Lab	0	0	3	3	1.5	40	60	100
20CD6003	SC	Career competency Development III	0	0	2	2	1	40	60	100
20CC6003	SC	Value added course/Certificate Course III	0	1	0	1	1	40	60	100
20EE7501	PR	Internship/skill development Training I	0	0	0	0	1.5	00	100	100
20MC800 2-12	MC	Mandatory course III	2	0	0	2	0	00	00	00
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Semester 20 Points							
		Total	17	1	11	29	21.5	360	640	1000

NECR B.Tech 20 SEMESTER VI

Subject	Category	Course Title	Contact Periods per week		Credits	Scheme of Examination Max. Marks				
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20EE2011	РС	Electrical Measurements & Instrumentation	2	0	0	2	2	40	60	100
20EE2012	РС	Modern Power System Analysis	3	0	0	3	3	40	60	100
20EE2013	РС	Switch Gear and Protection	3	0	0	3	3	40	60	100
-	OE	Open Elective III	3	0	3	3	3	40	60	100
20EE4006 -10	PE	Professional Elective II	3	0	0	3	3	40	60	100
20EE4011 -15	PE	Professional elective III	3	0	0	3	3	40	60	100
20EE2507	РС	Measurements & Instrumentation Lab	0	0	2	2	1	40	60	100
20EE2508	РС	Power Systems Lab	0	0	3	3	1.5	40	60	100
20CD6004	SC	Career competency Development IV	0	0	2	2	1	40	60	100
20CC6004	SC	Value added course/Certificate course IV	0	1	0	1	1	40	60	100
		Counseling/Mentorin g	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Seme			the Seme	ster	20 Points		
		Total	17	1	13	28	21.5	400	600	1000

SEMESTER VII

Subject	Subject CodeCategoryCourse TitleContact Period week	ods per	Credits	Schem N	Scheme of Examination Max. Marks					
Code	cutegory	course Thie	L	Т	Р	Total	creatio	Int. Marks	Ext. Marks	Total Marks
20HS5001- 8	HE	Humanities and Social Science Elective	2	0	0	2	2	40	60	100
20EE2014	РС	Solid State Electric Drives	3	0	0	3	3	40	60	100
20EE2015	РС	Power System Operation and Control	3	0	0	3	3	40	60	100
-	OE	Open Elective IV	2	0	2	4	3	40	60	100
20EE4016- 20	PE	Professional elective IV	3	0	0	3	3	40	60	100
20EE4021- 25	PE	Professional elective V	3	0	0	3	3	40	60	100
20EE2509	РС	Electronic systems design lab	0	0	2	2	1	40	60	100
20EE2510	PC	Power Systems Simulation Lab	0	0	3	3	1.5	40	60	100
20CD6005	SC	Career competency Development V	0	0	2	2	1	40	60	100
20CC6501	SC	Skill development Training	0	0	2	2	1	40	60	100
20EE7502	PR	Internship II/on job training/Com Ser	0	0	3	3	1.5	00	100	100
20MC8002 -12	MC	Mandatory course IV	2	0	0	2	0	00	00	00
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme	During the Seme			the Seme	ster	20 Points		
		Total	18	0	17	35	23	400	700	1100

SEMESTER VIII

Subject	Category	Course Title	Contact Periods per week		Credits	Scheme of Examination Max. Marks		of nation Iarks		
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20EE7503	PR	Project work, seminar and internship	0	0	0	0	12	60	140	200
		Activity Point Programme		Du	ring	the Seme	ester		20 points	8
			0	0	0	0	12	60	140	200

OPEN ELECTIVES (OE) Offered by EEE Department

Department	Course Code	Open Elective
	20EE3001	Artificial Neural Networks and Fuzzy Logic
	20EE3002	Energy Auditing and Conservation
	20EE3003	Electrical Measurements and Instrumentation
Electrical & Electronics	20EE3004	Energy Storage Technologies
Ligiteering	20EE3005	Electrical Technology
	20EE3006	Industrial Automation Engineering
	20EE3007	Industrial Electrical Systems
	20EE3008	Renewable Energy Sources
	20EE3009	Research Methodology

PROFESSIONAL ELECTIVES (PE)

Elective	Professional	Professional	Professional	Professional	Professional
Track/Group	Elective-1	Elective-2	Elective-3	Elective-4	Elective-5
Advanced Power systems	Industrial Electrical Systems (20EE4001)	Power System Planning (20EE4006)	Reactive Power Compensation and Management (20EE4011)	Power Quality (20EE4016)	Smart Grid Technologies (20EE4021)
Control Systems	System Modeling and Identification (20EE4002)	Advanced Control systems (20EE4007)	Digital Signal Processing (20EE4012)	Multivariable Control System (20EE4017)	Real Time Control System (20EE4022)
Electromechanical Systems	Machine Modeling and Analysis (20EE4003)	Electrical Machine Design (20EE4008)	Programmable Control Devices and Applications (20EE4013)	Hybrid Electrical Vehicles (20EE4018)	Automotive Electrical Engineering (20EE4023)
Energy Systems	Renewable Energy Conversion Systems (20EE4004)	Solar and Fuel Cell Energy Systems (20EE4009)	Wind and Biomass Energy Systems (20EE4014)	Utilization of Electrical Energy (20EE4019)	Energy Audit &Demand side Management (20EE4024)
Power Electronics	Advanced Power Electronics (20EE4005)	Advanced Electrical Drives (20EE4010)	HVDC & FACTS (20EE4015)	Advanced Power Converters (20EE4020)	Advanced Power Semiconductor Devices and Protection (20EE4025)

LIST OF HONOR SUBJECTS

S.NO	Course Name	Course Code	L-T-P	Credits						
	POOL-1 (Power Systems)									
1	Advanced power system	20EEH001	3-1-0	4						
2	Advanced Power system protection	20EEH002	3-1-0	4						
3	Power system dynamics and control	20EEH003	3-1-0	4						
4	Restructed power system	20EEH004	3-1-0	4						
POOL-2 (Power Electronics)										
1	Analysis of Power Electronic Converters	20EEH005	3-1-0	4						
2	Application of Power Converters	20EEH006	3-1-0	4						
3	Power Electronic Applications to Renewable Energy	20EEH007	3-1-0	4						
4	Switched Mode Power Conversion	20EEH008	3-1-0	4						
	POOL-3 (Renewable Energy Sou	irces)								
1	Advanced Electrical Vehicles	20EEH009	3-1-0	4						
2	Grid Integration of Renewable Energy systems	20EEH010	3-1-0	4						
3	High Power Battery Technologies	20EEH011	3-1-0	4						
4	Renewable Energy Technologies	20EEH012	3-1-0	4						
-	POOL-4 (Integrated Circuits)									
1	CAD for VLSI	20EEH013	3-1-0	4						
2	CMOS Analog and digital VLSI design	20EEH014	3-1-0	4						
3	Digital Design through Verilog HDL	20EEH015	3-1-0	4						
4	VLSI design	20EEH016	3-1-0	4						

S.NO.	Course Name	Course Code	L-T-P	Credits
1	Electrical Measurements	20EEM001	3-1-0	4
2	Electrical Technology	20EEM002	3-1-0	4
3	Instrumentation	20EEM003	3-1-0	4
4	Network Analysis	20EEM004	3-1-0	4
5	Power Distribution system	20EEM005	3-1-0	4
6	Power system Generation	20EEM006	3-1-0	4
7	Power Transmission system	20EEM007	3-1-0	4
8	Renewable Energy Resources	20EEM008	3-1-0	4

LIST OF MINOR SUBJECTS

PROFESSIONAL ELECTIVES (PE)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
V Sem	Professional Elective I	20EE4001-05	3
VI Sem	Professional Elective II	20EE4006-10	3
	Professional Elective III	20EE4011-15	3
VILCom	Professional Elective IV	20EE4016-20	3
VII Sem	Professional Elective V	3	
	TOTAL	1	15

OPEN ELECTIVES (OE)

SEMESTER	SUBJECT	CREDITS
IV Sem	Open Elective I	3
V Sem	Open Elective II	3
VI Sem	Open Elective III	3
VII Sem	Open Elective IV	3
	TOTAL	12

SKILL ORIENTED COURSE (SC)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
III Som	Career Competency Development I	20CD6001	1
III Selli	Value Added Course/Certificate Course I	20CC6001	1
IV Sam	Career Competency Development II	20CD6002	1
Iv Sem	Value Added Course/Certificate Course II	20CC6002	1
V Som	Career Competency Development III	20CD6003	1
v Selli	Value Added Course/Certificate Course III	20CC6003	1
VI Sam	Career Competency Development IV	20CD6004	1
vi Sem	Value Added Course/Certificate Course IV	20CC6004	1
VII Som	Career Competency Development V	20CD6005	1
vii Sem	Skill Development Training	20CC6501	1
	TOTAL		10

PROJECT (PR)

SEMESTER	SUBJECT	COURSE CODE	CREDITS
V Sem	Internship I/on job training/Com Ser Project	20EE7501	1.5
VII Sem	Internship II/on job training/Com Ser Project	20EE7502	1.5
VIII Sem	Project work, seminar and internship	20EE7503	12
	TOTAL		15

HUMANITIES AND SOCIAL SCIENCES (HS)

SEMESTER	Course Code	SUBJECT	CREDITS
Ĭ	20EN1001	English	2
1	20EN1501	English Language Lab	1.5
II	20EN1502	Oral Communication skills lab	1
VII	20HS5001-8	Humanities and social Science Elective	2
		TOTAL	6.5

BASIC SCIENCES (BS)

SEMESTER	Course Code	SUBJECT	CREDITS
	20MA1001	Algebra and Calculus	4
Ι	20PH1001	Applied Physics	3
	20PH1501	Applied Physics Lab	1.5
	20CH1001	Chemistry	3
II	20MA1003	Vector Calculus, Complex Variables and Transforms	4
	20CH1501	Chemistry lab	1.5
III	20MA1006	Probability Statistics and Numerical Methods	3
		TOTAL	20

ENGINEERING SCIENCES (ES)

SEMESTER	Course Code	SUBJECT	CREDITS
	20ES1001	Problem Solving and Programming	3
т	20ES1501	Electrical Engineering Workshop	1
1	20ES1505	Electrical Engineering &IT Workshop	2
	20ES1506	Problem Solving and Programming Lab	1.5
	20ES1002	Basic Electrical Circuits	3
П	20ES1007	Introduction to Python Programming	2
	20ES1507	Basic Electrical Circuits Lab	1
	20ES1504	Engineering Graphics Lab	3
	20ES1510	Introduction to Python Programming Lab	1
	20ES1011	Data Structures	3
III	20ES1013	Electronics Devices and Circuits	3
	20ES1516	Electronics Devices & Electrical Circuits lab	1.5
		Total	25

PROFESSIONAL CORE (PC)

SEMESTER	Course Code	SUBJECT	CREDITS
	20EE2002	DC Machines and Transformers	3
	20EE2001	Electrical Circuit Analysis	3
III	20EE2501	DC Machines and Transformers Lab	1.5
	20EE2502	Electrical Circuits and Simulation Lab	1.5
		9	
	20EE2003	Analog Electronic Circuits	2
	20EE2004	Electro Magnetic Fields	3
	20EE2005	Induction Motors and Synchronous Machines	3
IV	20EE2006	Linear Control Systems	3
	20EE2007	Power Generation & Transmission	3
	20EE2503	Analog Electronics and Simulation Lab	1
	20EE2504	Induction Motors and Synchronous Machines Lab	1.5
		16.5	
	20EE2008	Digital Electronics and logic design	3
-	20EE2009	Power Distribution & Distributed Generation	3
	20EE2010	Power Electronics	3
V	20EE2505	Control Systems and Simulation Lab	1.5
	20EE2506	Power Electronics & Simulation Lab	1.5
		12	
	20EE2011	Electrical Measurements & Instrumentation	2
	20EE2012	Modern Power System Analysis	3
VI	20EE2013	Switch Gear & Protection	3
VI	20EE2507	Measurements & Instrumentation Lab	1
	20EE2508	Power Systems Lab	1.5
		10.5	
	20EE2014	Solid State Electric Drives	3
	20EE2015	Power System Operation & Control	3
VII	20EE2509	Electronic systems design lab	1
	20EE2510	Power Systems Simulation Lab	1.5
		8.5	
		TOTAL	56.5

C NO	SUBJECT			CREI	DITS PER	SEMESTE	R			Credits
5 NO	AREA	Ι	II	III	IV	V	VI	VII	VIII	NECN
1	HS	3.5	1					2		6.5
2	BS	8.5	8.5	3						20
3	ES	7.5	10	7.5						25
4	PC			9	16.5	12	10.5	8.5		56.5
5	PE					3	6	6		15
6	OE				3	3	3	3		12
7	SC			2	2	2	2	2		10
8	PR					1.5		1.5	12	15
9	MC									No credit
	TOTAL	19.5	19.5	21.5	21.5	21.5	21.5	23	12	160

NARAYANA ENGINEERING COLLEGE::NELLORE

DEPARTMENT OF ELECTRICAL & ELETRONICS ENGINEERING

SEMESTER I

Subject	Category	Course Title		onta pei	ct Pei r wee	riods k	Credits	Scheme of Examination Max. Marks		
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks
20MA1001	BS	Algebra and Calculus	3	1	0	4	4	40	60	100
20PH1001	BS	Applied Physics	3	0	0	3	3	40	60	100
20ES1001	ES	Problem Solving and Programming	3	0	0	3	3	40	60	100
20EN1001	HS	English	2	0	0	2	2	40	60	100
20PH1501	BS	Applied Physics Lab	0	0	3	3	1.5	40	60	100
20ES1501	ES	Electrical Engineering Workshop	0	0	2	2	1	40	60	100
20ES1505	ES	Engineering & IT Workshop	0	0	4	4	2	40	60	100
20ES1506	ES	Problem Solving and Programming Lab	0	0	3	3	1.5	40	60	100
20EN1501	HS	English Language Lab	0	0	3	3	1.5	40	60	100
20MC8001	МС	Mandatory course I :Induction Program					Induction P	rogram		
		Counseling/Mentoring	0	0	1	1	0			
		Sports/Hobby Clubs/Activities	0	0	2	2	0			
		Activity Point Programme		Du	iring	the Seme	ester		20 Points	
		Total	11	1	18	30	19.5	360	540	900

	NARAYANA ENGINEERING COLLEGE: NELLORE								
20MA1001	Α	lgebra 8	Calculu	ıs (CSE, I	ECE, EEI	E, CE, M	E)	R-2020	
I-B.Tech	Ho	ours / We	ek	Total	Credit		Max I	Marks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
I-Semester	3	60	100						
Pre-requis	ite: Inter	rmediat	e Mathe	matics					
Course Ob	jectives:								
1.	To famili	arize the	student	s with the	theory of	matrices	s and qua	dratic forms	
2.	To analyz	ze first o	der ordi	nary diffe	erential ec	uations.			
3.	To enlight an its app	ten the l	earners i	n the con	cepts of h	igher ord	ler differe	ential equation	
4.	To explai multivaria	n the seri able diffe	es expan rential c	sions usin alculus.	ig mean va	alue theor	rems and t	the concepts of	
5.	To sumn	narize th	e proce	dure to so	olve the pa	artial diff	erential e	quations.	
6.	To explai	n the stu	dent wit	h mathen	natical to	ols neede	d in evalu	uating multiple	
	integrals	and its a	pplicatio	ons.				0 1	
Course Ou	tcomes:	After suc	cessful	completic	on of the c	ourse, th	e	Blooms	
student wil	l be able	to						taxonomy	
								Level	
CO 1	Solve t	he syster	n of Line	ear Equati	ions			BL-3	
CO 2	Solve f	irst orde	r differen	ntial equa	tions utili	zing the	standard	BL-3	
	techniq	ues for s	eparable	, exact, li	inear, hor	nogeneou	s, or		
	Bernou	lli cases.							
CO 3	Obtain	the con	plete so	lution of	a higher	order dif	ferential	BL-2	
	equation	ns			r 1 · .	- ·			
CO 4	Make 1	use of th	e Tayloi	r's and M	laclaurin's	s Series a	and	BL-3	
	Maxima	a, Minim	a for the	given tun	ction	<u> </u>	T ·		
CO 5	Apply a	a range o	t techniq	ues for so	lutions of	tirst orde	r Linear	BL-3	
	and nor	i inear P	artial Dil		zquations	(PDE)	A C		
CO 6	Apply	the techr	iques of	Multiple	integrals	for the A	Area of	BL-3	
	the regi	on bound	led by cu	rves and	volume				

	CO-PO Mapping													
CO						P	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2												
CO2	3	3	1											
CO3	3	3	1											
CO4	3	2												
CO5	3	3	1											
CO6	3	2												
					l:Low	v, 2-M	lediun	n, 3- H	ligh					
					CO	URSE	E CON	ITEN	Т					
М	ODUI	L E – 1	L			Ma	atrice	5				14	H	
Introductio	n to m	atrice	s, Def	initior	n of Ra	ank ,D	efinit	ion of	Echel	on for	m, P	roblen	ns, Solv	ving
System of	Non-H	Iomog	geneou	is equ	ations	s- Def	initio	n, Co	nditio	ns for	Cons	sistenc	ey, Pr	oblems,

Solving System of Homogeneous equations- Definition, Problems, Eigen values & Eigen Vectors- Definition, Problems ,properties of Eigen values & Eigen Vectors(Without proof), Cayley – Hamilton Theorem -Statement(Without proof),finding inverse and power of a matrix by Cayley-Hamilton Theorem, Diagonalization of a Matrix-Definition, similarity of a matrix, modal matrix, spectral matrix, powers of a matrix, problems on Diagonalization of a matrix, Quadratic Forms- Definition, Finding Matrix from Q.F, Index, signature, rank and nature of the quadratic forms, Reduction of Q.F. into a canonical form by linear transformation, Reduction of Q.F. into a canonical form by linear transformation.

At the end of the Module 1, students will be able to:

- 1. Solve the system of homogenous and non-homogenous linear equations.BL-3
- 2. Obtain the Eigen values and Eigen vectors of a matrix.BL-2
- 3. Identify special properties of matrix and for using this information to study the nature of the linear equations. BL-3
- 4. Find the inverse and powers of a square matrix.BL-1
- 5. Obtain the diagonalization form of the matrix.BL-2
- 6. Apply the techniques of matrices in various engineering problems. BL-3

MODULE -2	First Order Ordinary Differential	9 H
	Equations	

Exact Differential equation - Definition, condition for exactness, problems, Non - Exact Differential equations- Integrating factor, Method1:Integrating factor by inspection, problems, Method2:Finding Integrating factor, problems, Method3:Finding Integrating factor, problems, Method4:Finding Integrating factor, problems, Method5:Finding Integrating factor, problems, Linear differential Equation- Definition, Working rule to find general solution, problems, Bernoulli's differential Equation- Definition, Working rule to find general solution, problems, Applications of Differential equation of First order: Newton's law of Cooling-Explanation of the concept, problems, Law of natural growth and Decay- Explanation of the concept, problems and Simple Electric Circuits-Explanation of the concept, problems.

At the end of the Module 2, students will be able to:

- 1. Identify the first order ordinary differential equations. BL-3
- 2. Solve the first order ordinary differential equations. BL-3
- 3. Apply the techniques of first order ordinary differential equations in Newton's law of cooling, Natural growth & Decay problems. BL-3
- 4. Make Use of the first order ordinary differential equation techniques in simple electric circuits.

BL-3

MODULE-3	Higher Order Ordinary Differential	10 H
	Equations	

Non-Homogenous Linear Differential equation of second and higher order with constant coefficients-Definition, complete solution, operator D, rules for finding Complimentary function, problems, inverse operator, General method for finding Particular Integral.

Non-homogeneous Linear Differential Equations of Second & Higher order with Constant coefficients with RHS term of the type e^{ax} , sinax , cosax, Polynomial in X, $e^{ax}v(x)$, X.V(x)-Explanation of the concept& problems, Method of variation of parameters- Explanation of the concept& problems, Euler- Cauchy equation- Definition, problems ,Legendre's Linear equation-Definition, problems. Applications to Higher order Differential Equations - L-C-R circuits, problems.

At the end of the Module 3, students will be able to:

1. Identify the higher order ordinary differential equations. BL-3

2. Solve the linear differential equations with constant coefficients by appropriate methods BL-3

3. Solve the linear differential equations with variable coefficients by appropriate methods BL-3

4.Make Use of the higher order ordinary differential equations techniques in electrical circuits. and in various engineering problems. BL-3

MODULE-4	Mean value theo	rems &	9 H
	Multivariable	Calculus	

Taylor's and Maclaurin's theorems with remainders-Statements (without proof), problems on Taylor's series, problems on Maclaurin's series, Jacobean-Definition, Properties, problems ,Functional dependence-Definition, problems, Maxima & Minima of function of two variables Rules, Maxima & Minima of function of two variables without constraint- problems, Maxima & Minima of function of two variables with constraint- problems, Lagrange's Method of Undetermined multipliers, problems.

At the end of the Module 4, students will be able to:

- 1. Demonstrate the given function as a series of Taylor's and maclurin's with remainders.BL-2
- 2. Illustrate series expansions of functions using mean value theorems. BL-2
- 3. Apply Jacobean concept to deal with problems in change of variables.BL-3
- 4. Obtain the maxima and minimum values of the function for two variables.BL-2
- 5. Apply the mean value theorems to check the continuity of the function in the given interval BL-3

MODULE-5	Partial Differential Equations	11 H

Definition ,Formation of PDE by the Method of Elimination of arbitrary constants, problems ,Method of Elimination of arbitrary functions, problems, Method of Separation of Variables-Explanation of the concept& problems, First order linear partial differential equations-Definition, Solutions of first order linear PDE-Working rule of Lagrange's Method, problems ,First order non-linear partial differential equations- Definition, Solutions of first order nonlinear partial differential equations-Standard form-I, problems , Standard form-II, problems ,Standard form-IV, problems.

At the end of the Module 5, students will be able to:

- 1. Identify the basic properties of partial differential equations. BL-3
- 2. Outline partial differential equations. BL-2
- 3. Solve the applications of PDE by using the method of separation of variablesBL-3
- 4. Apply the PDE techniques in various engineering fields. BL-3

······································		
MODULE-6	Multiple Integrals	11 H

Double Integrals- Introduction, Evaluation in Cartesian coordinates, problems, Evaluation in Polar coordinates, change of variables – Problems on Cartesian to Polar, Change of Order of Integration- Problems, Area enclosed by plane curves - Problems, Triple integrals- Introduction, Evaluation of Triple Integrals, Volume by Triple Integrals – Problems, Change of variables

betwe	en C	artesian, cylindrical and sp	herical p	olar coordinates- Problems.						
At the	At the end of the Module 6, students will be able to:									
1.	1. Obtain double integrals in Cartesian and polar co-ordinates. BL-2									
2.	Ob	tain the area bounded by a	region us	sing double integration techni	iques.BL-2					
3.	So	lve triple integrals.BL-3	-		-					
4.	Ob	tain volumes by using triple	e integra	lls.BL-2						
4.	Μ	ake Use of multiple integra	al technic	ques in engineering problems	.BL-3					
		Total h	ours:		64 H					
Conte	ent b	eyond syllabus:								
1.	O	rthogonal Trajectories.								
2.	D	eflection of Beams .								
3.	Sir	nultaneous Linear equation	s with co	onstant coefficients						
4.	Ta	ylor's series for function of	two vari	iables.						
5.	Ho	mogeneous Linear Partial	different	ial equations with constant co	pefficients.					
6.	Ca	lculation of mass, centre of	gravity,	, moment of inertia						
Self-S	Stud	y:								
Con	ntent	s to promote self-Learning	g:							
S	Ν	Торіс	CO	Reference						
C)									
1		Matrices	CO1	https://youtu.be/P2pL5VT	<u>`hrzO</u>					
2		First Order Ordinary Differential Equations	CO2	https://youtu.be/P7gVp33	<u>3B6M</u>					
3		Higher Order	CO3	https://youtu.be/btOCUmJ	<u>lkrrg</u>					
		Ordinary Differential								
		Equations								
4		Mean value theorems	CO4	https://voutu.be/bJPuv002	Z-tE					
		& Multivariable		https://youtu.be/0apMXhV	VG W8					
	Calculus: https://youtu.be/agfSOOiO2kI									
5		Partial	CO5	https://youtu.be/kZ7Oa7iM	iCs					
		DifferentialEquations								
6		Multiple Integrals	CO6	https://youtu.be/mIeeVrv44	7s					
		L B								

Text Book(s):

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2011.
- 2. B. S. Grewal, Higher Engineering Mathematics, 44/e, Khanna Publishers, 2017
- 3. N. Bali, M. Goyal, C. Watkins, Advanced Engineering Mathematics, Infinity Science Press.

Reference Book(s):

1. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 3/e, Alpha Science International Ltd., 2002.

2. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 13/e, Pearson Publishers, 2013.

3.B. V. Ramana, Higher Engineering Mathematics, Mc Graw Hill Education 4.H. k Das, Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand.

Online Resources/ Web Resources:

1 http://www.macs.hw.ac.uk/~simonm/linalg.pdf

2.<u>http://www.e-booksdirectory.com/details.php?ebook=7400re</u>

3 http://www.efunda.com/math/math_home/math.cfm

4.http://www.ocw.mit.edu/resources/#Mathematics

5 .http://www.sosmath.com/

6.<u>http://www.mathworld.wolfram.com/</u>

NARAYANA ENGINEERING COLLEGE:NELLORE										
20PH1001		APPLIED PHYSICS								
I-B.Tech	Hours	/ Week		Total hrs	Fotal hrsCreditMax Marks					
	L	Т	Р		С	CIE	SEE	TOTAL		
I-Semester	3	0	0	48	3	40	60	100		
Pre-requisi	ite: Fund	damenta	l concep	ts of Physics	5					
Course Ob	jectives	:								
1. To ide	ntify the	importa	nce of th	ne optical ph	enomenon i.e	. interfere	nce and di	ffraction		
related	l to its E	ngineeri	ng appli	cations						
2. To ena	ble the s	students	in under	standing the	importance	of quantun	n physics			
3. To lear	rn the dy	vnamics	of free e	lectrons in n	netals by app	lying Free	electron th	neories		
on met	als.									
4. To exp	lain and	l provide	the kno	wledge abo	ut semicondu	ctors		_		
5. To tead	ch the co	oncepts r	elated to	supercondu	activity & nar	no materia	ls which le	eads to		
their	fascinati	ing appli	ications.				- · ·			
6. To imp	part know	wledge i	n basic o	concepts of I	_ASERs alon	g with its .	Engineerin	g		
applica	ations									
Course Ou	tcomes:	After su	iccessful	completion	n of the course	e, the stud	ent will be	able to:		
CO 1	Expla	in optic	al phenc	omenon i.e.	interference,	diffraction	n using Hı	iygen's wave		
	theory.			• •	<u> </u>					
CO 2	Comp	rehend a	and expla	ain the conc	epts of matter	r waves, w	vave function	ons and its		
	interpr	etation t	o unders	tand the ma	tter at atomic	scale.				
CO 3	Compr	ehend F	ree elec	tron theories	s on metals a	ind apply	them to lea	arn the		
	dynam	ics of fre	ee electr	ons in metal	S					
CO 4	Compu	ite carri	er conce	ntration in	semiconducto	ors and to	understan	d carrier		
	transpo	ort mech	anism ir	semicondu	ctors					
CO 5	Unders	stand the	e concep	ots of super	conductors a	nd nano r	naterials to	o familiarize		
	their ap	pplicatio	ns in rel	evant fields.	, 	136 11				
CO 6	Realize	e import	ance of I	LASERs in I	Engineering a	nd Medica	al applicati	ons.		

CO-PO Mapping														
СО	PO	PO											PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1									2		
CO2	3	2										2		
CO3	2	2										1		
CO4	3	2										2		
CO5	3	2				1						2		
CO6	3	2				1						2		
1: Low, 2-	Mediu	ım, 3-	High											

COURSE CONTENT

MODULE – 1

WAVE OPTICS

Interference-Principle of Superposition, Interference of light, Conditions for sustained Interference ,derivation of conditions for constructive and destructive interference of reflected light from a thin film, Newton's Rings-experimental arrangement, Determination of Wavelength; Engineering applications of Interference

Diffraction-distinction between interference and diffraction, differences between Fresnel & Fraunhoffer diffractions, Fraunhoffer Diffraction at single slit(derivation, energy distribution curve), Fraunhoffer Diffraction at a Double slit (derivation, energy distribution curve), Theory of Diffraction Grating -Determination of Wavelength; Engineering applications of diffraction

At the end of the Module 1, students will be able to:

- 1. explain the need of coherent sources and the conditions for sustained interference BL-2
- 2. describe the theory of interference of reflected light from a thin film BL-2
- 3. explain the theory of Fraunhoffer Diffraction of light at single and multiple slits BL-2
- 4. identify engineering applications of interference and diffraction BL-3
- 5. analyze the differences between interference and diffraction (L4)

MODULE -2

INTRODUCTION TO QUANTUM MECHANICS

Matter waves -de-Broglie hypothesis - properties, G.P.Thomson experiment, Phase and group velocities—Expression for group velocity; Heisenberg's uncertainty principle; Schrodinger's time dependent and independent wave equations – Physical significance of wave function-important characteristics of wave function, free particle energy, wave function, momentum; operators and expectation values, Eigen values and Eigen functions of a particle confined to one dimensional infinite square well (potential well).

At the end of the Module 2, students will be able to:

- 1. understand the concept of matter waves BL-2
- 2. Recognize the difference between phase velocity and group velocity BL-2.
- 3. understand Physical significance of wave function BL-2
- **4.** Identify the importance of Schrodinger's wave equation in describing the motion of elementary particles BL-3 .

MODULE-3

FREE ELECTRON THEORY OF METALS

Classical free electron theory-assumptions, expression for electrical conductivity, merits and demerits; Quantum free electron theory of metals-expression for electrical conductivity; Fermi-Dirac distribution, Mathiesson rule, causes of electrical resistance in metals, Bloch's theorem (Qualitative), Kronig - Penny Model (Qualitative), effective mass and Brillouin zones, Classification of solids into conductors, semiconductors and insulators based on energy band gap.

At the end of the Module 3, students will be able to:

- 1. explain Classical, Quantum free electron theory of metals BL-2.
- 2. apply these theories to explain electrical conductivity in metals BL-3

8 H

8 H

9 H

3. explain formation of energy bands in solidsBL-2.

4. Understand the band structure of a solid and Classify materials as metals, insulators, or semiconductors, and sketch a schematic band diagram for each one BL-2.

MODULE-4

INTRODUCTION TO SEMICONDUCTORS

8 H

8 H

Origin of energy bands, Intrinsic semiconductors - density of charge carriers(derivation), Fermi energy, Electrical conductivity; extrinsic semiconductors - P-type & N-type, Density of charge carriers, Dependence of Fermi energy on carrier concentration and temperature; Direct and Indirect band gap semiconductors, Hall effect- Hall coefficient (derivation), Applications of Hall effect; Drift and Diffusion currents, Einstein coefficients, Continuity equation(derivation), Applications, Applications of Semiconductors.

At the end of the Module 4, students will be able to:

- 1. outline the properties of n-type and p-type semiconductors BL-2.
- 2. interpret the direct and indirect band gap semiconductors BL-2.
- 3. identify the type of semiconductor using Hall effect BL-3.
- 4. identify applications of semiconductors in electronic devices BL-3

MODULE-5

SUPERCONDUCTORS AND NANOMATERIALS

Superconductors- Properties, Meissner's effect, BCS Theory, Josephson effect (AC &DC), Types of Super conductors, Applications of superconductors. Nano materials – Significance of nanoscale, Properties of nanomaterials: Physical, mechanical, Magnetic, Optical; Synthesis of nanomaterials: Top-down-Ball Milling, Bottom-up –Chemical vapour deposition; Applications of Nano materials.

At the end of the Module 5, students will be able to:

1. explain how electrical resistivity of solids changes with temperatureBL-2

2. classify superconductors based on Meissner's effect BL-2

3. explain Meissner's effect, BCS theory & Josephson effect in superconductors BL-2

4. identify the nano size dependent properties of nanomaterials BL-3

5. illustrate the methods for the synthesis and characterization of nanomaterials BL-2

6. Apply the basic properties of nanomaterials in various Engineering branches BL-3

MODULE-6

LASERS & OPTICAL FIBERS

Lasers: Spontaneous & stimulated emission of radiation, Population inversion, Pumping methods, Properties of lasers- monochromaticity, coherence, directionality, brightness, Types of lasers: Nd-YAG Laser, He–Ne Laser, Semiconductor laser; Applications.

Introduction to Optical Fibers-Total Internal Reflection-Critical angle of propagation-Acceptance angle-Numerical Aperture-Classification of fibers based on Refractive index profile-advantages of optical fibres.

At the end of the Module 6, students will be able to:

- 1. describe Spontaneous & stimulated emission of radiation BL-2
- 2. Understand the basic concepts of LASER light Sources BL-2

7 H

- 3. describe the construction and working of different types of Lasers BL-2
- 4. identify the applications of lasers in various fields BL-3

Content beyond syllabus: Polarization of light.

Self-Study:

Contents to promote self-Learning:

S.NO	Торіс	CO	Reference
1	Wave Optics	CO1	https://youtu.be/n65gZGwiZtk
2	Introduction To Ouantum	CO2	https://youtu.be/w7Wf3Wr0guA?list=PL1955A 15B7F282A7F
	Mechanics		https://youtu.be/NfkJKIoExYo?list=PL1955A1 B7F282A7F
3	Free Electron Theory Of Metals	CO3	https://youtu.be/L-eOdZFt9BY https://youtu.be/G2zgAs50718
4	Introduction To Semiconductors	CO4	https://youtu.be/BOijtyYxgIM https://youtu.be/rzxCRJcFaIw
5	Superconductors And Nanomaterials	CO5	https://youtu.be/GgIT1RoBPzg https://youtu.be/iiT_KJJ1Uhs
6	Lasers	CO6	https://youtu.be/eoOM0Gx6GJc https://youtu.be/RyY4PEpV2RO

Total hours:

48 hours

Text Book(s):

- 1. M. N. Avadhanulu, P.G. Kshirsagar & TVS Arun Murthy" AText book of Engineering Physics"- S. Chand Publications, 11th Edition 2019.
- 2. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2012.
- 3. S.O.Pillai, "Solid State Physics", 8th edition, New Age International Publishers, 2018.

Reference Book(s):

- 1. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson Education, 2018
- 2. N. Subrahmanyam, BrijLal, A Textbook of Optics, S. Chand, New Delhi, 2015
- 3. Kittel, C. —Introduction to Solid State Physics. Wiley, 2005.
- 4. K. Thyagarajan, Engineering Physics, McGraw-Hill Education (India) Pvt. Ltd, 2016.
- 5. Ajoy Ghatak, Optics, 5th Edition, McGraw Hill, 2012
- 6. O. Svelto, "Principles of Lasers", Springer Science & Business Media, 2010.
- 7. William T. Silfvast, "Laser Fundamentals" 2nd edition, Cambridge University Press, 2004.
- 8. T. Pradeep, "A Text Book of Nanoscience and Nanotechnology", Tata Mc Graw Hill, 2003

Online Resources:

- 1. http://www.peaceone.net/basic/Feynman/
- 2. http://physicsdatabase.com/free-physics-books/
- 3. http://www.damtp.cam.ac.uk/user/tong/statphys/sp.pdf
- 4. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html

Web Resources:

- http://link.springer.com/book
 http://www.thphys.physics.ox.ac.uk
 http://www.sciencedirect.com/science
 http://www.e-booksdirectory.com

NARAYANA ENGINEERING COLLEGE:NELLORE									
20ES1001	I	PROBLE	M SOLV	ING AND	PROGR	AMMINC	Ţ	R2020	
I-B.Tech	Hours / Week Total Credit Max Marks								
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
I-Semester	3	0	0	48	3	40	60	100	
Pre-requis	ite: Mathe	matics Kr	owledge,	Analytical	l and Logic	cal skills			
Course Ob	jectives:								
1. To ur	derstand v	arious ste	ps in Prog	ram develo	opment.				
2. To un	derstand th	he basic co	oncepts in	C Program	nming Lan	guage.			
3. To lea	arn how to	write mod	lular and r	eadable C	Programs.				
4. To lea	arn the syn	tax and se	mantics of	f a C Progr	amming la	anguage.			
5. To lea	arn structu	red progra	mming ap	proach for	r problem s	solving.			
Course Ou	itcomes: A	After succ	essful con	npletion of	of the cour	se, the stu	dent will	be able to:	
CO 1	Identify n	nethods to	solve a p	roblem thr	ough com	puter prog	ramming.	BL-3	
CO 2	Understa	nd the use	of basic e	lements of	C languag	ge. BL-2			
CO 3	Understa	nd the diff	erence and	d the usage	e of variou	s control s	tatement.	BL-2	
CO 4	Apply the	e modular	approach	for solving	g the proble	ems. BL-3			
CO 5	Apply the	e Arrays a	nd Pointer	s for solvi	ng problen	ns. BL-3			
CO 6	Explain U	Jser-Defin	ed Data T	ypes and H	Files. BL-2				

CO-PO Mapping														
PO PSO											50			
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3											1	
CO2	1	2	1										1	
CO3	1	2	1		2								2	2
CO4	2	2	3	2	1							2	3	2
CO5	3	3	2	2								1	2	
CO6	2	2	2	2								1	2	
					l:Low	v, 2-M	ledium	n, 3- H	ligh					

	COURSE CONTENT							
MODULE – 1	Fundamentals of Computers and Programming	8H						
Fundamentals of computers: History of Computers, Generations of Computer, The Computer								
System - The Inp	out-Process-Output Concept, Components of Computer Syst	em, Operating						
System - Introduct	tion, Objectives, Functions.							
Introduction to I	Programming, Algorithms and Flowcharts: Programs and	Programming,						
Programming lang	uages, Compiler, Interpreter, Structured Programming Concept	ot, Algorithms,						
Flowcharts, How t	to Develop a Program.							
Fundamental Alg	orithms: Exchanging the values of Two Variables, Counting,	Summation of						
a set of numbers, 1	Factorial computation, Generation of the Fibonacci Sequence,	Reversing the						
digits of an integer								
At the end of the M	Module 1, students will be able to:							
1. Illustrate the	e working of a Computer. BL-2							
2. Solve proble	ems using language independent notations. BL-3							
3. Understand	the compilers and interpreters. BL-2							
4. Understand	Structured Programming. BL-2							
5. Develop algorithms and flowcharts for problems.BL-3								
MODULE -2	Basic Elements of C	7 H						
Basics of C: Intre	oduction, Character Set, Structure of a C Program, A Simpl	e C Program,						
Variables, Data T	ypes and Sizes, Declaration, How does The Computer Store I	Data in						

Memory, Identifiers, Keywords, Constants, Assignment, and Initialization.			
Operators and Expressions: Arithmetic Operators, Relational Operators, Logical Operators,			
Bitwise Operators, Conditional Operator, Comma operator, size of operator, Expressions, L			
values and R values, Expression Evaluation- Precedence and Associativity, Type Conversion.			
At the end of the Module 2, students will be able to:			
1. Understand the basic structure of a program in C. BL-2			
2 Understand tokens in Clanguage BL-2			
3 Illustrate the working of expressions BL -2			
4. Understand the precedence and Associativity rules of operators PL 2			
4. Understand the precedence and Associativity fulles of operators. BL-2			
MODULE 2 Data Input / Output and Control Statements	0 TT 0		
MODULE-5 Data Input / Output and Control Statements			
Input and Output: Basic Screen and Keyboard I/O in C, Formatted Input and C Unformatted Input and Output Functions	Julpul,		
Control Statements: Selection Statements if Nested if if else Nested if else else if			
Ladder switch Looping Statements - while do while for Nested loops Unconditional			
Statements -90 to break continue return	ionai		
At the end of the Module 3 students will be able to:			
1. Explain the Formatted and Unformatted I/O functions. BL-2			
2. Understand Selection Statements. BL-2			
3. Understand Looping Statements. BL-2			
4. Explain Unconditional Statements. BL-2			
MODULE-4 Functions and Program Structure	8 H		
Functions: Introduction, Using Functions, Passing Arguments to a Function,	Working with		
Function, Scope and Extent, Recursion, The C Preprocessor.			
Program Structure: Storage classes, Automatic variables, External variables, S	tatic variables,		
Register variables, Multi file programs.	,		
At the end of the Module 4, students will be able to:			
1. Understand the basic concept of functions. BL-2			
2 Understand sensent of Desurgion and Drennesses DL 2			
2. Understand concept of Recursion and Preprocessor. BL-2			
 Onderstand concept of Recursion and Preprocessor. BL-2 Explain storage specifiers. BL-2 			
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers	9 H		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Array, Multidimension	9 H Arrays, Passing		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings,	9 H Arrays, Passing , String Input,		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings.	9 H Arrays, Passing , String Input,		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin	9 H Arrays, Passing , String Input, g Pointers to a		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer	9 H Arrays, Passing , String Input, g Pointers to a r to Functions,		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management.	9 H Arrays, Passing , String Input, g Pointers to a r to Functions,		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to:	9 H Arrays, Passing , String Input, g Pointers to a r to Functions,		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays, BL-2	9 H Arrays, Passing , String Input, g Pointers to a r to Functions,		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers	9 H Arrays, Passing , String Input, g Pointers to a r to Functions,		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management, BL-2	9 H Arrays, Passing , String Input, g Pointers to a r to Functions,		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6 User-Defined Data Types and Files Structures and Unions: Basics of Structures Nesting of Structures Arrays	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H		
2. Understand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6 User-Defined Data Types and Files Structures and Pointers. Structures and Functions, Self-Referential Structures	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H s of Structures, s. Unions, Bit-		
2. Understand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6 User-Defined Data Types and Files Structures and Unions: Basics of Structures, Nesting of Structures, Arrays Structures and Pointers, Structures and Functions, Self-Referential Structures fields, Enumerations, type def.	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H s of Structures, s, Unions, Bit-		
2. Understand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6 User-Defined Data Types and Files Structures and Unions: Basics of Structures, Nesting of Structures, Arrays Structures and Pointers, Structures and Functions, Self-Referential Structures fields, Enumerations, type def. Files: Introduction, Using Files in C, Working with Text Files, Random Access	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H s of Structures, s, Unions, Bit- sses to Files of		
2. Understand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. MODULE-6 User-Defined Data Types and Files Structures and Pointers, Structures and Functions, type def. Files: Introduction, Using Files in C, Working with Text Files, Random Access Records.	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H s of Structures, s, Unions, Bit- sses to Files of		
2. Onderstand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6 User-Defined Data Types and Files Structures and Unions: Basics of Structures, Nesting of Structures, Arrays Structures and Pointers, Structures and Functions, Self-Referential Structures fields, Enumerations, type def. Files: Introduction, Using Files in C, Working with Text Files, Random Access Records. At the end of the Module 6, students will be able to:	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H s of Structures, s, Unions, Bit- sses to Files of		
2. Understand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6 User-Defined Data Types and Files Structures and Unions: Basics of Structures, Nesting of Structures, Arrays Structures and Pointers, Structures and Functions, Self-Referential Structures fields, Enumerations, type def. Files: Introduction, Using Files in C, Working with Text Files, Random Acces Records. At the end of the Module 6, students will be able to: 1. Explain user defined data types. BL-2	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H s of Structures, s, Unions, Bit- sses to Files of		
2. Understand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6 Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6 User-Defined Data Types and Files Structures and Unions: Basics of Structures, Nesting of Structures, Arrays Structures and Pointers, Structures and Functions, Self-Referential Structures fields, Enumerations, type def. Files: Introduction, Using Files in C, Working with Text Files, Random Acces Records. At the end of the Module 6, students will be able to: 1. Explain user defined data types. BL-2 2. Understand the concept of Self-Referential Structures. BL-2	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H s of Structures, s, Unions, Bit- sses to Files of		
2. Understand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6 User-Defined Data Types and Files Structures and Unions: Basics of Structures, Nesting of Structures, Arrays Structures and Pointers, Structures and Files in C, Working with Text Files, Random Accear Records. At the end of the Module 6, students will be able to: 1. Explain user defined data types. BL-2 2. Understand the concept of Self-Referential Structures. BL-2 MODULE-6 Using Files in C, Working with Text Files, Random Accear Records. At the end of the Module 6, students will be able to: 1. Explain user defined data types. BL-2 2. Understand the concept of Self-Referential	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H s of Structures, s, Unions, Bit- sses to Files of		
2. Understand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 MODULE-6 User-Defined Data Types and Files Structures and Unions: Basics of Structures, Nesting of Structures, Arrays Structures and Pointers, Structures and Functions, Self-Referential Structures fields, Enumerations, type def. Files: Introduction, Using Files in C, Working with Text Files, Random Accear Records. At the end of the Module 6, students will be able to: 1. 1. Explain user defined data types. BL-2 2. 2. Understand the concept of Self-Referential Structures. BL-2 3. MODULE-6 Using Files in C, Working with Text Files, Random Accear Records. At the end of the Module 6, students will be able to:	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H of Structures, s, Unions, Bit- sses to Files of 48 HOURS		
2. Understand concept of Recursion and Preprocessor. BL-2 3. Explain storage specifiers. BL-2 MODULE-5 Arrays and Pointers Arrays and Strings: Introduction, One-Dimensional Array, Multidimensional Arrays to Function, Strings - Declaration, Initialization, Printing Strings, Character Manipulation, String Manipulation, Arrays of Strings. Pointers: Fundamentals, Pointer Declarations, Operations on pointers, Passin, Function, Pointers and Arrays, Arrays of Pointers, Pointer to Pointer, Pointer Command line arguments, Dynamic Memory Management. At the end of the Module 5, students will be able to: 1. Understand the concept of Arrays. BL-2 2. Understand the concept of pointers. BL-2 2. Understand the concept of pointers. BL-2 3. Explain Dynamic Memory Management. BL-2 2. MODULE-6 User-Defined Data Types and Files Structures and Unions: Basics of Structures, Nesting of Structures, Arrays Structures and Pointers, Structures and Functions, Self-Referential Structures fields, Enumerations, type def. Files: Introduction, Using Files in C, Working with Text Files, Random Access Records. At the end of the Module 6, students will be able to: 1. Explain user defined data types. BL-2 2. Understand the concept of Self-Referential Structures. BL-2 3. Understand the concept of Self-Referential Structures. BL-2 3. Understand the working of files. BL-2 3. Understand the working of files. BL-2 </td <td>9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H s of Structures, s, Unions, Bit- sses to Files of 48 HOURS</td>	9 H Arrays, Passing , String Input, g Pointers to a r to Functions, 8 H s of Structures, s, Unions, Bit- sses to Files of 48 HOURS		

2. Binary Files

3. Variable Length Argument Lists Self-Study: Contents to promote self-Learning:

SNo	Module	Reference
	Fundamentals of Computers and Programming	https://nptel.ac.in/courses/106/106/106106127/
1		[Lec1]
		https://nptel.ac.in/courses/106/105/106105214/
		[Week 1 - Lec 1 To 2]
		https://nptel.ac.in/courses/106/105/106105171/
		[Week 1 - Lec 1 To 4]
2 Ba		https://nptel.ac.in/courses/106/105/106105171/
		[Week I - Lec5]
	Basic Elements of C	<u>nups://nptel.ac.in/courses/100/105/1001051/1/</u> [Week 2 - Lecture 7 To 10]
		[week 2 - Lecture / 10 10 $]https://nptel.ac.in/courses/106/105/106105171/$
		[Week 3 - Lec 11 To 14]
		https://nptel.ac.in/courses/106/106/106106127/
		[Lec2]
		https://nptel.ac.in/courses/106/106/106106127/
		[Lec3]
		https://nptel.ac.in/courses/106/106/106106127/
		[Lec4]
3	Data Input / Output and Control Statements	https://nptel.ac.in/courses/106/106/106106127/
		[Lec5] https://mtol.oo.in/courses/106/105/106105171/
		$\frac{\text{Intps://inptel.ac.in/courses/100/105/1001051/1/}{\text{[Week 3 - Lec 15]}}$
		https://pptel.ac.in/courses/106/105/106105171/
		Week 4 - Lec 16 To 20] [Week 5 - Lec 21 To 25]
		https://nptel.ac.in/courses/106/106/106106127/
		[Lec 6 &7]
4	Functions and Program Structure	https://nptel.ac.in/courses/106/105/106105171/
		[Week 7 - Lec35] [Week 8 - Lecture 36 To 40]
		https://nptel.ac.in/courses/106/105/106105171/
		[Week 11 - Lec 53 To 54]
		<u>nttps://nptel.ac.in/courses/106/106/106/06127/</u>
		ttps://pptel.ac.in/courses/106/105/106105171/
5	Arrays and Pointers	[Week 6 - Lec 26 To 30][Week 7 - Lec 32 To 34 48]
		[Week 12 - Lec 58, 59, 61]
		https://nptel.ac.in/courses/106/106/106106127/
		[Lec 9 To 19]
		https://nptel.ac.in/courses/106/105/106105171/
6		[Week 11 - Lec 55, 56, 57, 60]
	User-Defined Data Types and Files	https://nptel.ac.in/courses/106/106/106106127/
		[Lec 36, 37, 38]
		https://nptel.ac.in/courses/106/106/106106127/
Text Book(s):

- 1. Pradip Dey, and Manas Ghosh, "Programming in C", 2018, Oxford University Press.
- 2. Byron Gottfried, Schaum's Outline of Programming with C, 4th Edition, 2018, McGraw-Hill

Reference Books :

- 1. Brian W. Kernighan, and Dennis M. Ritchie, "The C Programming Language", 2ndEdition, Pearson.
- 2. Ajay Mittal, Programming in C: A Practical Approach, 3/e, Pearson Publication
- 3. SCHILDT and HERBERT, C: The Complete Reference,4th Edition, McGraw Hill, 2020
- 4. SOMASHEKARA, M. T., GURU, D. S., MANJUNATHA, K. S., Problem Solving with C,2nd Edition, PHI Learning, 2018
- 5. Paul Deitel, Deitel& Harvey Deitel, C How to Program,6th Edition, Pearson Education
- 6. Jeri R. Hanly, Elliot B. Koffman, Ashok Kamthane and A.Ananda Rao, Programming in C and Data Structures, 1st Edition, Pearson Education, 2010.
- 7. H.Cheng, C for Engineers and Scientists, Mc.Graw-Hill International Edition Education / PHI, 2009
- 8. Yashavant P. Kanetkar, Let us C, 16th Edition, BBP Publications, Delhi, 2017.
- 9. R.G. Dromey, "How to Solve it by Computer". Pearson, 2014.
- 10. Anita Goel, Computer Fundamentals, Pearson Publication, 2010.

Online Resources / Web Resources:

- 1. https://nptel.ac.in/courses/106/105/106105171/
- 2. https://nptel.ac.in/courses/106/106/106106127/
- 3. <u>https://www.youtube.com/playlist?list=PLVlQHNRLflP8IGz6OXwlV_lgHgc72aXlh</u>
- 4. <u>https://www.youtube.com/watch?v=8PopR3x-VMY</u>
- 5. <u>https://www.youtube.com/watch?v=vl794HKeXug</u>
- 6. https://books.goalkicker.com/CBook/
- 7. https://www.tutorialspoint.com/cprogramming/index.htm
- 8. <u>https://www.programiz.com/c-programming</u>
- 9. https://www.javatpoint.com/c-programming-language-tutorial
- 10. https://www.edureka.co/blog/c-programming-tutorial/
- 11. https://data-flair.training/blogs/c-tutorial/
- 12. https://www.programmingsimplified.com/c-program-examples
- 13. https://www.w3schools.in/category/c-tutorial/
- 14. C Programming Notes for Professionals book : https://books.goalkicker.com/CBook/

				N T 4	D 4 17							LODE		
		NAKA YANA ENGINEERING COLLEGE :: NELLORE												
	20EN	N1001						ENG	LISH				R	2020
	I-B.	Tech		Н	ours /	Week		Tota	1	Credit		Max M	arks	
				L	Т		Р	nrs		С	CIE	SEE	E TC	DTAL
	I-Sei	mester		2	0		0	32		2	40	60		100
Р	're-req	uisite	: Knowledge of fundamentals of English Language & Grammar											
C	Course	Obje	ctives	:										
С	1. 7 2. 7 3. 7 4. 7 5. 7 6. 7	Fo enl Fo im Vocab Fo prop Po exp reader Fo ac editing nemo Fo aic Repor	 improve the Language proficiency of students in English with an emphasis on ocabulary, Reading and Writing skills. provide knowledge of grammatical structures & rules and encourage their propriate use. expose the students to Reading skills and apply the skill & strategies of a successful ader acquaint the students with effective strategies of paragraphs, note making, text iting, review writing and formal correspondence such as letter writing, e mail, and emos. aid the students acquire appropriate and adequate knowledge on writing Technical eports. 								sis on their essful g, text l, and hnical			
	CO 1	A g	Acquire gramma	e in dep atical a	oth kno	wledg y and	e on fo vocabu	rmulat ılary bu	ing ap iilding	propriate . BL-2	sentence	es with		
	CO 2	U S	Jnderst entenc	tand th es una	e facto mbiguo	rs that ously.	influe BL-2	nce in u	use of §	grammar	and lear	n to use		
	CO 3	I c	mpart o	effectiv ice & c	ve strat cohesio	egies f n with	or pro	fession ate sup	al writ port &	ten comn z detail. I	nunicatio 3L-3	on using	devices	of
	CO 4	F N	Provide Note m	know aking	ledge o & Para	of use of phrasin	of phra ng. BL	ses & c 2	lauses	and imp	rove effe	ctive wr	iting	
	CO 5	5 U	Jnders trategi	tanding es to p	g the gr lan to y	amma vrite d	r rules ialogu	for syn es, revi	thesis ews ar	of senten d edit the	ices and u e text effe	use prew ectively.	riting BL-2	
	CO 6	N S p	Master provide	the ski know	lls and ledge c	sub sk on the s	tills of structur	reading re and f	g and u format	use strateg	gies for r ical writi	eading e ng. BL- 3	ffective 3	ly and
						C	D-PO	Mappi	ng					
O	DO	DO	DOG	DO 1	D 05	DOI	D 07	PO	DOG	DOI	DOI	DOIO	PS	
	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO 1	PSO 2
D1	1									2		2	Ŧ	
02	1									2		2		
	-		1	1	1	1	1			-		_		1

CO3

CO4

CO5	1							3	3	
CO6	1							3	3	
				1: Lo	ow, 2-1	Mediur	n, 3-			
					Hi	gh				

	COURSE CONTENT	
Module – I		6 H
Grammar : Part	s of speech: Noun (Countables & Uncountables, Singula	rs & Plurals, Kinds of
Nouns), Pronoun,	Verb, Adverb, Adjective - Kinds of Sentences & Sentence	e Structures – Question
forms – Word orde	er in Sentence	
Vocabulary Buil	ding : Concept of word formation – Synonyms & Anto	onyms – Homonyms &
Homophones – Pr	efixes & suffixes – Commonly confused Words – One word	d substitutes – Idioms &
Phrasal Verbs		
At the end of the	Module 1, students will be able to:	
• Acquire in	depth knowledge on basic grammar concepts.	_
• Understan	d the meaning of suffixes & Prefixes, idioms and phrasal ver	bs.
• Learn mea	ning and usage of Vocabulary.	
Module – II		8 H
Grammar : Subje	ct Verb agreement – Pronoun-antecedent agreement – Verb	os: auxiliary verbs
(Primary & Modal)- Tenses	
Writing : Princip	les of writing: clarity, simplicity, brevity, single focus, or	ganization of thoughts -
Sentence Structure	e - Joining the sentences - sequencing the ideas - introdu	action and conclusion -
Punctuation.		
At the end of the	Module II, students will be able to:	
• Learn to us	e sentences clearly.	
Understand	l the usage of grammar.	
• Learn the i	mportance of use of Auxiliary verbs.	
Module – III		10 H
Grammar : Direc	t & Indirect Speech – Active and Passive Voice – Compariso	on of Adjectives –
Articles - Preposit	ions	-
Writing : Paragra	ph Writing - Phrases & Clauses - Conditionals - Business le	tters and Emails and
Memos - Structure	/ template of common business letters and emails: inquiry/ c	omplaint/ placing an
order		
At the end of the	Module III, students will be able to:	
• Understand	and learn the nuance of writing business letters, e-mails, me	emos and effective
paragraphs		
• Learn to us	e devices of coherence & cohesion with adequate support &	detail
Learn the	use of prepositions and active & passive voice in angine	ering and scientific

• Learn the use of prepositions and active & passive voice in engineering and scientific contexts.

Grammar : Phrasal Verb – Cause and effect – Verb noun Collocation collocations – correcting common errors in grammar and usage - Misplaced expressions Writing : Note Making- organizing techniques: providing a suitable title, headin methods of sequencing - Paraphrasing -techniques of paraphrasing: Replace	
collocations – correcting common errors in grammar and usage - Misplaced expressions Writing : Note Making- organizing techniques: providing a suitable title, headin methods of sequencing - Paraphrasing -techniques of paraphrasing: Replace	s & adjective-noun
Writing : Note Making- organizing techniques: providing a suitable title, headin methods of sequencing - Paraphrasing -techniques of paraphrasing: Replace	modifiers, idiomatic
methods of sequencing - Paraphrasing -techniques of paraphrasing: Replace	ngs and sub headings:
	ement of words and
phrases, change of sentence structures.	
At the end of the Module IV, students will be able to:	
 Understand the usage of phrases and clauses in sentences 	
• Learn grammatical rules to encourage their appropriate use in writing	
• Learn to write effective note making and paraphrase	
Modulo V	8 U
 structure - language items like special vocabulary and idioms used At the end of the Module V, students will be able to: Acquire the knowledge of applying the grammatical rules for synthesis of Learn to write dialogues for various contexts Learn to edit the text and writing reviews 	sentences
Module – VI	6 H
Reading Skills : Types of reading: Skimming Scanning Intensive & Extensive F	Reading - Effective
	County Encoure
Reading-Tips	
Reading-Tips Reading Comprehension	
Reading Comprehension Scramble Sentences	
Reading-Tips Reading Comprehension Scramble Sentences Complete the passage using contextual clues	
Reading-Tips Reading Comprehension Scramble Sentences Complete the passage using contextual clues Identifying Main Ideas using Scanning Technique	
Reading-Tips Reading Comprehension Scramble Sentences Complete the passage using contextual clues Identifying Main Ideas using Scanning Technique Identifying Specific Ideas using Skimming Technique	
Reading-Tips Reading Comprehension Scramble Sentences Complete the passage using contextual clues Identifying Main Ideas using Scanning Technique Identifying Specific Ideas using Skimming Technique Writing : Describing – Report Writing: definition - purpose – types – structure -	formal and informal
Reading-Tips Reading Comprehension Scramble Sentences Complete the passage using contextual clues Identifying Main Ideas using Scanning Technique Identifying Specific Ideas using Skimming Technique Writing : Describing – Report Writing: definition - purpose – types – structure - reports - stages in developing report- proposal, progress and final reports –examp	formal and informal ples
Reading-Tips Reading Comprehension Scramble Sentences Complete the passage using contextual clues Identifying Main Ideas using Scanning Technique Identifying Specific Ideas using Skimming Technique Writing : Describing – Report Writing: definition - purpose – types – structure - reports - stages in developing report- proposal, progress and final reports –examp At the end of the Module VI, students will be able to:	formal and informal bles
Reading-Tips Reading Comprehension Scramble Sentences Complete the passage using contextual clues Identifying Main Ideas using Scanning Technique Identifying Specific Ideas using Skimming Technique Writing : Describing – Report Writing: definition - purpose – types – structure - reports - stages in developing report- proposal, progress and final reports – examp At the end of the Module VI, students will be able to: • Master the skills and sub skills of reading	formal and informal bles
Reading-Tips Reading Comprehension Scramble Sentences Complete the passage using contextual clues Identifying Main Ideas using Scanning Technique Identifying Specific Ideas using Skimming Technique Writing : Describing – Report Writing: definition - purpose – types – structure - reports - stages in developing report- proposal, progress and final reports –examp At the end of the Module VI, students will be able to: • Master the skills and sub skills of reading • Learn the structure and format of technical reports	formal and informal ples

Content beyond syllabus:

Self-Study: Contents to promote self-Learning:

SN O	Торіс	СО	Reference
1	Vocabulary for Aptitude &	CO1	https://youtu.be/uzvZa2qEuWo

	Recruitment Tests Campus Jobs		
2	Tips to Improve Verbal and Written Communication Skills	CO2	https://youtu.be/6Y3NY0ERBxY
3	How to write professional emails in English	CO3	https://youtu.be/3Tu1jN65slw
4	Introduction to Collocation	CO4	https://youtu.be/-ouWOpo2Uh8
5	Error Spotting Questions in Campus Recruitment Tests	CO5	https://youtu.be/Rz6-qjNrzCU
6	Reading Skills: How To Skim, Scan and Read for Detail Effectively	CO6	https://youtu.be/SRHNKzXxu60

Text Books:

- Green, David Contemporary English Grammar –Structures and Composition, MacMillan India, 2014
- Raymond Murphy's English Grammar with CD, Murphy, Cambridge University Press, 2012
- Michael Swan, (2017) Practical English Usage (Practical English Usage), 4th edition, UK: Oxford University Press.
- Ashraf, M Rizvi. Effective Technical Communication. Tata McGraw-Hill, 2006.

Reference Books

- English Conversation Practice Grant Taylor, Tata McGraw Hill, 2009.
- Hewings, Martin. Cambridge Academic English (B2). CUP, 2012
- Meenakshi Raman and Sangeeta Sharma, Professional Communication, Second Edition, Oxford University Press, India, 2017
- Michael McCarthy, Felicity O'Dell, (2015) English Vocabulary in Use Advanced (South Asian Edition), UK: Cambridge University Press
- Spoken English, R.K. Bansal & JB Harrison, Orient Longman, 2013, 4Th edition.

WEB RESOURCES:

- Grammar/Listening/Writing 1-language.com
- <u>http://www.5minuteenglish.com/</u>
- <u>https://www.englishpractice.com/</u>
 <u>Grammar/Vocabulary</u>
- English Language Learning Online
- <u>http://www.bbc.co.uk/learningenglish/</u>
- <u>http://www.better-english.com/</u>
- <u>http://www.nonstopenglish.com/</u>
- <u>https://www.vocabulary.com/</u>
- BBC Vocabulary Games
- Free Rice Vocabulary Game

<u>Reading</u>

- <u>https://www.usingenglish.com/comprehension/</u>
- <u>https://www.englishclub.com/reading/short-stories.htm</u>
- <u>https://www.english-online.at/</u> Listening
- https://learningenglish.voanews.com/z/3613
- http://www.englishmedialab.com/listening.html
 - <u>Speaking</u> <u>https://www.talkenglish.com/</u>

•

- BBC Learning English Pronunciation tips
- Merriam-Webster Perfect pronunciation Exercises
 <u>All Skills</u>
- <u>https://www.englishclub.com/</u>
- <u>http://www.world-english.org/</u>
- <u>http://learnenglish.britishcouncil.org/</u>

Online Dictionaries

- Cambridge dictionary online : <u>https://dictionary.cambridge.org/</u>
- MacMillan dictionary : <u>https://www.macmillandictionary.com/</u>
- Oxford learner's dictionaries : <u>https://www.oxfordlearnersdictionaries.com/</u>

	NA	RAYANA	ENGINI	EERING	COLLEG	E:NELLO	ORE			
20PH1501			Appl	ied Physi	cs lab			R2020		
I-B.Tech	Н	ours / We	ek	Total	Credit		Max Marks			
	L	Т	Р	hrs	С	CIE	CIE SEE TOTAL			
I-Semester	0	0	3	48	1.5	40	60	100		
Pre-requis	ite: Nil									
Course Ob	jectives:									
1.	To prov	ide studer	nt to learn	about so:	me import	ant exper	imental te	chniques in		
	physics w	ith know	ledge in	theoretical	aspects	so that th	ey can ex	xcel in that		
	particular field. To prepare students for performing requirement analysis and									
	design of variety of applications.									
2.	To enable	the stude	ents to unc	lerstand th	e concept	s of interf	erence and	l diffraction		
	and their a	application	ns.							
3.	To educa	te studer	nts to rec	ognize th	e applica	tions of	laser in	finding the		
	wavelengt	h, slit wid	lth and its	role in dif	fraction st	udies				
4.	To make t	he studen	ts to under	rstand the	important	parameter	s of optica	al fibres and		
	metals									
Course Ou	tcomes: A	After succ	essful co	mpletion	of the cou	rse, the st	udent will	be able to:		
CO 1	learn im	portant co	ncepts of	physics th	rough invo	olvement	in the exp	eriments by		
	applying	theoretica	ıl knowled	ge.						
CO 2	understa	nd the con	ncepts of in	nterference	e and diffra	action and	their appl	ications.		
CO 3	recognize	recognize the applications of laser in finding the wavelength, slit width and its								
	role in di	ffraction s	studies							
CO 4	understa	nd the im	portant pa	rameters o	f optical fi	bres and n	netals			

	CO-PO Mapping													
CO		PO								PS	50			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1										2		
CO2	2	1				1						2		
CO3	2	1				1						2		
CO4	2	1										2		
					l:Low	v, 2-M	lediun	n, 3- H	ligh					

COURSE CONTENT	CO
Task -1 Determination of Hall voltage and Hall coefficient of a given semiconductor	
using Hall effect.	
The objective :To determine	CO 1
a) sign of the charge carriers,	
b) charge carrier concentration,	
c) mobility of the charge carriers of a given semiconductor	
Task - 2 To determine the resistivity of semiconductor by Four probe method	
Objective: To determine the resistivity of semiconductor by Four probe method	CO 1
Task -3Determine the energy gap of a given semiconductor diode.	

Objective: To plot characteristics between reverse saturation current and 103 /T and find out the approximate value of Energy Band Gap in PN junction diode	CO 1
TASK -4 Measurement of radius of curvature of a lens by Newton's rings method.	
Objective: To determine the wavelength of sodium light by Newton's Ring method The key idea behind Newtons ring experiment is the thin film formation between a plane- convex lens and a glass plate. Due to this thin film of air a path difference occurs in the waves which reflect from the lower surface of the lens and the top surface of the glass plate. As a result of it, they superimpose and develop the interference pattern.	CO 2
TASK -5. Determine the thickness of the wire using wedge shape method	
Objective: To calculate the thickness of a thin wire by forming interference fringes using an air wedge arrangement. The key idea behind this experiment is the formation of thin wedge shaped film between two plane glass plates. Due to this thin film of air, a path difference occurs between waves reflected from top and bottom surface of the film. On superimposition of these waves an interference pattern containing a number of straight line fringes will be produced	CO 2
TASK-6 Determination of wavelength by plane diffraction grating normal incidence	
method	
Objectives:	CO 2
 2. To familiarize with the principle of diffraction in plane transmission grating 3. To know the procedure for standardization of the grating 4. To determine the wavelengths of prominent spectral lines of mercury spectrum. An arrangement, which is equivalents in its action to a large number of parallel slits of same width separated by equal opaque spaces is called diffraction grating. It is constructed by ruling fine equidistant parallel lines on an optically plane glass plate with the help of a sharp diamond point. 	
TASK -7 Dispersive power of a diffraction grating	
objective: To determine Dispersive power of a diffraction grating When white light passes through a grating, different wavelengths undergo different angles of diffraction. Hence white light split up into different colours and diffraction spectra of different orders will be produced. The angular dispersion or dispersive power of a grating is defined as the rate of change of angle of diffraction with the change of wavelength in a particular order of the spectrum.	CO 2
TASK -8 Determination of wavelength of LASER light using diffraction grating	
Objectives :1. To determine the concept of diffraction 2. To determine the wavelength of the given Laser source.	CO 3
TASK -9 . Laser: Diffraction at a single slit	
Objective: Determination of width of a given single slit using laser diffraction method Laser beam has high monochromaticity, coherence and directionality. Hence it forms a clear diffraction pattern and we can measure width of a single slit accurately.	CO 3
1ASK -10 Laser: Diffraction at a double slit	

Objective: Determination of width of a give	n double slit using lase	r diffraction method.	CO3
- J	0		

With this experiment we can demonstrate diffraction nature of lasers and measure width of a double slit accurately.

Additional Experiments:

TASK -11 To determine the numerical aperture and acceptance angle of a given optical fibre

Objective: To determine the numerical aperture and acceptance angle of a given optical CO 4 fiber.

In optical fibres light travel by multiple total internal reflections. Numerical aperture represents light gathering powerof optical fibre. Acceptance angle represents maximum limiting angle at one end of optical fibre for the light ray to travel by multiple total internal reflections through the core region of thefibre.

1. Optical fibers may be used for accurate sensing of physical parameters and fields like pressure, temperature and liquid level.

2. For military applications like fiber optic hydrophones for submarine and underwater sea application and gyroscopes for applications in ships, missiles and aircrafts.

CO4

Self-Study:

Contents to promote self-Learning:

SN	Торіс	CO	Reference
0			
1	Newton rings		https://youtu.be/PU-SeNfIRcs
2	Diffraction grating experiment - Wavelength of mercury spectrum		https://youtu.be/N0lxwqANsd4
3	Experiment - Laser Grating-Determination of Wavelength of Given Laser Source		https://youtu.be/764Fr0mnOrO

Text Book(s):

 C. L. Arora, "Practical Physics", S. Chand & Co., New Delhi, 3rd Edition, 2012.
 Vijay Kumar, Dr. T. Radhakrishna, "Practical Physics for Engineering Students", S M Enterprises, 2nd Edition, 2014.

Reference Book(s):

1.S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics"- S Chand Publishers, 2017.

2. C.H. Bernard and C.D. Epp, John Wiley and Sons, "Laboratory Experiments in College Physics" Inc.,

New York, 1995.

3. Dr.Ruby Das, C.S.Robinson, Rajesh Kumar and Prasanth Kumar "A text book of Engineering Physics

Practical", 1st edition, Sahu University Science Press, 2010.

4. Jayaraman, "Engineering Physics Laboratory Manual", 1st edition, Pearson Education, 2014.

Web Resources:

1. https://www.scribd.com/doc/143091652/ENGINEERING-PHYSICS-LAB.

2. https://www3.nd.edu/~wzech/LabManual_0907c.pdf.

3.<u>https://www.morebooks.de/store/gb/book/engineering-physics-lab-manual/isbn/978-3-330-34402.</u>

	NA	RAYANA	ENGINI	EERING	COLLEG	E: NELL	ORE	
20ES1501		ELECT	RICAL EN	NGINEER	ING WOR	KSHOP		R2020
I-B.Tech	Η	ours / Wee	ek	Total	Credit		Max Mar	`ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
I-Semester	0	0	2	32	1	40	60	100
Pre-requi	site: Nil							
Course O	bjectives:							
1.	To know	v about	different	tools, a	bbreviatior	ns and s	ymbols in	Electrical
	Engineeri	ing						
2.	To learn a	about type	s of measu	ring instru	iments to r	neasure el	ectrical qu	antities
3.	To gain k	nowledge	on differe	nt types of	earthing a	and earth re	esistance	
4.	To study	different t	ypes of wi	ring				
Course O	utcomes:	After suc	cessful co	mpletion	of the cour	rse, the stu	ident will	be able to:
CO 1	Demonst	rate know	ledge on	different	tools, abbi	reviations	and symb	ols used in
	Electrical	l Engineer	ing					
CO 2	Measure	different e	electrical q	uantities u	sing measu	aring instr	uments	
CO 3	Explain l	now to tro	uble shoo	t the elect	rical equip	ments (lik	e fan, gri	nder, motor,
	etc.)							
CO ₄	Understa	nd about v	viring and	earthing f	or resident	ial houses		

					C	O-PO) Map	ping						
СО						Р	0						PS	5 0
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	1	1						1	2	3
CO2	2	2	2	1	1	1						1	2	3
CO3	2	2	2	1	1	1						1	2	3
CO4	2	2	2	1	1	1						1	2	3
				-	l: Low	v, 2-M	lediun	1, 3- H	ligh					

COURSE CONTENT	CO
Task - 1 - STUDY OF INTRODUCTION TO ELECTRICAL TOOLS, SYMBOLS AND ABBREVIATIONS	CO1
Objective: To Study the electrical tools, symbols and abbreviations in electrical	
engineering.	
Task - 2 - MAKING "T" JOINT AND STRAIGHT JOINT OF WIRES	CO 4
Objective: To make "T" joint and straight joint of wires for domestic wiring	
Task -3 - MEASUREMENTS OF ELECTRICAL QUANTITIES (VOLTAGE,	CO 2
CURRENT, POWER, POWER FACTOR IN RLC CIRCUITS)	
Objective: To measure voltage, current, power, power factor for a given RLC circuit.	
TASK -4 - STUDY OF MEASUREMENTS OF ENERGY (USING SINGLE PHASE	CO 2
METER) BY CONNECTING DIFFERENT LOADS	
Objective: To study the testing a single phase energy meter for measuring the power.	

TASK -5 - MEASUREMENT OF EARTH RESISTANCE	CO 4
Objective: To measure the earth resistance.	
TASK-6 - RESIDENTIAL WIRING (USING ENERGY METER, FUSES, SWITCHES, INDICATOR, LAMPS, etc.)	CO 4
Objective: To design different types of residential wirings and know the performance of residential wiring	
TASK -7 - FLUORESCENT LAMP WIRING	CO 4
Objective: To prepare wiring for a fluorescent tube light with switch control	
TASK -8 - SOLDERING & DESOLDERING PRACTICE	CO 3
Objective: To understand and know the Introduction to Soldering and disordering practice.	
TASK -9 - MEASUREMENT OF WIRE GUAGES USING GUAGE METER	CO 3
Objective: To Measure the of wire gauges using gauge meter.	
TASK -10 - DEMONSTRATION OF TRANSFORMER AND INDUCTION MOTOR	CO 3
Objective: To verify different components of transformer and induction motor and their applications.	
TASK -11 - LT SWITCHGEAR'S & MCB'S	CO 3
Objective: To understand different types of low tension switchgear equipments and MCB's	
TASK -12 - TROUBLE SHOOTING OF ELECTRICAL EQUIPMENTS (FAN, IRON BOX, MIXER,GRINDER, etc.)	CO 3
Objective: To understand and know the trouble shooting of electrical equipment's.	

Additional	Experime	nts:	
TASK -13 -	STUDY C	OF VARIOUS ELECTRICAL GADGETS (CFL AND LED)	CO 1
Objective:- used for light	To study al	bout CFL (Compact Fluorescent Lamp) and LED (Light Emitting Diode) es.	
TASK - 14	- STUDY (OF PHOTO VOLTAIC (PV) CELL	CO 4
Objective: '	To study ab	out Photo Voltaic Cell and its applications.	
TASK - 15	- IDENTI	FICATION OF COLOR CODE, RESISTORS, ICS, TRANSISTORS,	CO 1
CAPACITO	RS, DIOD	ES, SCRS, IGBTS ETC.	
Objective:-	To study a	bout the Identification of color code, resistors, ICs, Transistors, capacitors,	
diodes, SCR	s, IGBTs et	с.	
Self-Study	•		
Contents	to promote	e self-Learning:	
SNO	CO	Reference	

1	CO 1	Lab manual of Electrical Engineering by TTTI, Chennai.	
2	CO 2	Lab manual of Electrical Engineering by TTTI, Chennai.	
3	CO 3	Lab manual of Electrical Engineering by TTTI, Chennai.	
4	CO 4	Lab manual of Electrical Engineering by TTTI, Chennai.	

Text Book(s)/ Reference Book(s): 1. Lab manual of Electrical Engineering by TTTI, Chennai.

Online/Web Resources:

https://www.roboversity.com/workshops

	NARA	AYANA EN	GINEER	ING COLI	LEGE:NEI	LORE		
20ES1505		ENGI	NEERING	& ITWOF	RK SHOP			R2020
		PART	- A ENGI	NEERING	WORK SI	HOP		
I-B.Tech		Hours /	Week	Total hrs	Credits		Max M	arks
	L	Т	Р		С	CIE	SEE	TOTAL
I-Semester	0	0	4	64	2	40	60	100
Pre-requi	site: Basic	mathematic	cs.					
Course Obje1.To known2.To idetools &3.Toknowna comp4.To gaiPresen5.To leaSearchCO1UCO1UCO2ACO3ACO4UthCO5AA	ectives: w basic wo tools and entify, select equipment vaboutthein outer for use n knowledg ations rn about Ne ing omes:Afterst nderstand th pplytoolsfor pplybasiceled dchecktheir nderstand to e computer pply knowle aring BL-3	erkshop pro equipments and use va s. ternalpartso by installi- e about the tworking of uccessfulco te safety as makingmo ectricalengi functionali o disassemb ready to us	cesses and arious marl ofacompute ng the ope e usage of f computer ompletiono pects in us delsinrespe neeringkno ty.BL-3 le and asse e. BL-2 rconnect ty	l adopt safe king, meas er,assemblin rating syste tools like rs and use fthecourse, sing the to ectivetrades owledgeton emble a Per	ety practice uring, hold ngacomput em Word pro Internet fac thestudent ols and eq sofengineen nakesimple rsonal Com	es while w ling, striki erfromthep cessors, S cility for B willbeablet uipments.F ringworksh chousewirin puter and	vorking v ng and c parts,prep preadshe browsing to: BL-2 nop.BL-3 ngcircuit prepare nation	vith outting paring ets, and s
	uning. DE 3							
	(COURSE C	CONTENT	(TRADES	FOR PRA	(CTICE)		
Familiaritywith 300x40x25mm a) Half–Lapjo b) Mortiseano	differenttype oftwoodstoc int. Tenon joint	esofwoodsa ek.	I rade -1	Carpentry linwoodwo	y (o H) rkingandma	ikefollowin	agjointsfro	omoutof
			Trade-	2 Fitting (6 H)			
i.]Familiarity M.S. stock a) V-fit b) Do	with different vetail fit	t types of to	ols used in	fitting and	do the fittin	ig exercises	s out of 80	0 x 50 x 5 mm
	Trade -	3 Sheet M	etal Work	(6 H)				
Familiarity wi metal job from a) Tapered tra	h different ty out of 22 or y b) Conical	ypes of tools 20 guage C funnel	s used in sh G.I. sheet	eet metal w	orking, Dev	velopments	of follow	ving sheet
	Trade -	4 Electric	al House V	Wiring (6 l	H)			
Familiarities v Electrical con a) Two lamps b) Two way sy c) Tube light d) Two lamps	vith different nections in series vitch in parallel wi	types of bas	sic electrica	il circuits ar	nd make the	following		

Trade 5 - Welding

Familiarity with different types of tools used in welding and do the following welding exercises

- 1. Single V butt joint
- 2. Lap joint

Text Book(s):

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K., Nirjar Roy S.K. "Elements of WorkshopTechnology"Vol-I2008&Vol-II2010MediaPromoters&Publishers Pvt.Limited,Mumbai.
- 2. KalpakjianS.andStevenS.Schmid,"ManufacturingEngineeringand Technology" 4thEdition, Pearson Education IndiaEdition,2002.
- P. Kannaiah&K. L. Narayana "Workshop manual" 2ndEd., ScitechpublicationsPvt.Ltd.,Hyderabad,2008.

Reference Book(s):

1. Gowri P., Hariharan and Suresh Babu A., "Manufacturing Technology-I", Pearson Education2008.

WebResources:

- 1. https://www.muet.edu.pk/sites/default/files/images/users/41/Workshop%20Intro.pdf
- 2. http://ecoursesonline.iasri.res.in/mod/page/view.php?id=98826

PART-B IT WORKSHOP LAB

Course Objectives:

- 1. To provide Technical training on Productivity tools like Word processors, Spreadsheets, Presentations.
- 2. To make the students know about the internal parts of a computer, assembling, installing the operating system.
- 3. To teach connecting two or more computers.

	•	
Course O	utcomes: After successful completion of the course, the student	will be able to:
CO 1	Understand functionalities of a computer and operating system.	BL-2
CO 2	Practice Word processors, Presentation and Spreadsheet tool.	BL-2
CO 3	Connect computer using wired and wireless connections.	BL-2

					C	CO-PC) Map	ping						
						P	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1													
CO2	1													
CO3	1													
					1: Lov	w, 2-M	lediun	1, 3- H	ligh					

COURSE CONTENT	CO
Task-1 Learn about Computer (4H)	
Identify the internal parts of a computer and its peripherals. Represent the same in the form of diagrams including Block diagram of a computer. Write specifications for each part of a computer including peripherals and specification of Desktop computer. Submit it in the form of a report.	CO 1
Task -2 Assembling a Computer (4H)	
Disassemble and assemble the PC back to working condition. Troubleshoot the computer and identify working and non-working parts. Identify the problem correctly by various methods available (eg: beeps). Record the process of assembling and trouble-shooting a computer.	CO 1
Task-3 Install Operating system (2H)	CO 1
Install Linux, any other operating system (including proprietary software) and make the	
system dual boot or multi boot. Record the entire installation process.	
TASK-4 Operating system features (2H)	CO 1
Record various features that are supported by the operating system(s) installed. Submit a	
report on it. Access CD/DVD drives, write CD/DVDs, access pen drives, print files, etc.	
Install new application software and record the installation process.	
TASK-5 Word Processor (6H)	CO 2
Create documents using the word processor tool. Tasks to be performed are inserting and	
deleting the characters, words and lines, Alignment of the lines, Inserting header and	
Footer, changing the font, changing the colour, including images and tables in the word	
file, making page setup, copy and paste block of text, images, tables, linking the images	
which are present in other directory, formatting paragraphs, spell checking, etc. Prepare	
project cover pages, content sheet and chapter pages at the end of the task using the	

features studied. Submit a report of the word processor considered.	
Create documents using the word processor tool. Mail Merge in word processor for	
creating appointment orders for 10 employee records in excel.	
TASK-6 Spreadsheet (4H)	CO 2
To create, open, save the spreadsheet and format them as per the requirement. Some of the	
tasks to be practiced are Managing the worksheet environment, creating cell data,	
inserting and deleting cell data, format cells, adjust the cell size, applying formulas and	
functions, preparing charts, sorting cells, working with pivot tables and charts. Submit a	
report of the Spreadsheet application considered.	
TACK 7 Decomposite the set (II)	$\alpha \alpha \alpha$
IASK-7 Presentations (off)	CO 2
To create, open, save and run the presentations, Select the style for slides, format the	0 2
To create, open, save and run the presentations, Select the style for slides, format the slides with different fonts, colors, create charts and tables, insert and delete text, graphics	0 2
To create, open, save and run the presentations, Select the style for slides, format the slides with different fonts, colors, create charts and tables, insert and delete text, graphics and animations, bulleting and numbering, hyperlink, set the time for slide show, Record	CO 2
To create, open, save and run the presentations, Select the style for slides, format the slides with different fonts, colors, create charts and tables, insert and delete text, graphics and animations, bulleting and numbering, hyperlink, set the time for slide show, Record slide show. Submit a report of the Presentation tool considered.	CO 2
TASK-7 Presentations (off) To create, open, save and run the presentations, Select the style for slides, format the slides with different fonts, colors, create charts and tables, insert and delete text, graphics and animations, bulleting and numbering, hyperlink, set the time for slide show, Record slide show. Submit a report of the Presentation tool considered. TASK-8 Wired network & Wireless network (4H)	CO 2
To create, open, save and run the presentations, Select the style for slides, format the slides with different fonts, colors, create charts and tables, insert and delete text, graphics and animations, bulleting and numbering, hyperlink, set the time for slide show, Record slide show. Submit a report of the Presentation tool considered. TASK-8 Wired network & Wireless network (4H) Select a LAN cable, Identify the wires in the cable, Define the purpose of each wire, Study	CO 2 CO 3
To create, open, save and run the presentations, Select the style for slides, format the slides with different fonts, colors, create charts and tables, insert and delete text, graphics and animations, bulleting and numbering, hyperlink, set the time for slide show, Record slide show. Submit a report of the Presentation tool considered. TASK-8 Wired network & Wireless network (4H) Select a LAN cable, Identify the wires in the cable, Define the purpose of each wire, Study the RJ45 connecter, Use crimping tool to fix the cable to the connecter, Test the cable	CO 2 CO 3
To create, open, save and run the presentations, Select the style for slides, format the slides with different fonts, colors, create charts and tables, insert and delete text, graphics and animations, bulleting and numbering, hyperlink, set the time for slide show, Record slide show. Submit a report of the Presentation tool considered. TASK-8 Wired network & Wireless network (4H) Select a LAN cable, Identify the wires in the cable, Define the purpose of each wire, Study the RJ45 connecter, Use crimping tool to fix the cable to the connecter, Test the cable using LAN tester, Connect two or more computers using cross and straight cables,	CO 2 CO 3

Additional Experiments:						
TASK -1 IoT	CO 3					
Raspberry Pi Study the architecture of Raspberry pi, configure software, Install SD card, Connect the cables, Install Raspbian (or any other) operating system, Configure Wi-Fi, Remotely connect to your Raspberry Pi.						
TASK -2 OUTLOOK, MACROS						
Practice the following tasks and submit report						
A. Configure outlook and access mails.						
B. Create Macros in word and spreadsheet tools						

Text Book(s):

1. B.Govindarajulu, "IBM PC and Clones Hardware Trouble shooting and Maintenance",2nd edition, Tata McGraw-Hill, 2002

2. "MOS study guide for word, Excel, Powerpoint& Outlook Exams", Joan Lambert, Joyce Cox, PHI.

3. "Introduction to Information Technology", ITL Education Solutions limited, Pearson Education.

Reference Book(s):

1. Rusen, "Networking your computers and devices", PHI

2. Bigelows, "Trouble shooting, Maintaining & Repairing PCs", TMH.

On-line/Web Resources:

https://turbofuture.com/computers/Dissassembling-and-Assembling-the-computer-system https://www.instructables.com/id/Disassemble-a-Computer/ https://www.windowscentral.com/how-do-clean-installation-windows-10 https://www.tutorialspoint.com/ms_excel_online_training/index.asp https://www.raspberrypi.org

NARAYANA ENGINEERING COLLEGE::NELLORE									
20ES1506		Probl	em Solvin	g and Pro	ogrammin	g Lab		R2020	
I-B.Tech	Η	ours / Wee	ek	Total	Credit	Max Marks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
I-Semester	0	0	3	48	1.5	40	60	100	
Pre-requis	Pre-requisite: Mathematics Knowledge, Analytical & Logical Skills								
Course Ob	Course Objectives:								
1. To v	work with	the compo	ound data t	ypes					
2. To e	2. To explore dynamic memory allocation concepts								
3. To a	able to des	ign the flo	wchart and	d algorithr	n for real v	vorld prob	olems		
4. To a	able to wri	te C prog	rams for re	eal world p	problems u	ising simp	le and con	npound data	
type	s								
5. To (employee	good prog	gramming	style, star	ndards and	l practices	during pi	rogram	
deve	elopment								
Course Ou	itcomes: A	After succ	essful con	npletion of	of the cour	se, the stu	dent will	be able to:	
CO 1	Translate	algorithn	ns into pro	grams (In	C languag	ge) (BL - 1	2)		
CO 2	Code and	l debug pr	ograms in	C program	n language	using var	ious const	ructs.(BL-3)	
CO 3	Solve the	problems	and imple	ement algo	orithms in	C. (BL - 3)		
CO 4	Make use	e of differe	ent data ty	pes to han	dle the rea	l time data	a (BL - 3)		

	CO-PO Mapping													
PO												PS	50	
	PO	PO											PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2											1	
CO2	2	2	2										2	1
CO3	2	2	3	1	2								2	2
CO4	2	2	3	1	1								2	2
					1: Lov	v, 2-M	Iediun	1, 3- H	ligh					

COURSE CONTENT	CO					
	CO					
TASK-1 (3H)						
1. Practice DOS and LINUX Commands necessary for execution of C Programs.	CO 1					
2. Study of the Editors, Integrated development environments, and Compilers in						
chosen platform.						
3. Write, Edit, Debug, Compile and Execute Sample C programs to understand the						
programming environment.						
TASK-2 (6H)						
1. Practice programs: Finding the sum of three numbers, exchange of two numbers,	CO 1					
largest of two numbers, to find the size of data types, Programs on precedence and						
associativity of operators, sample programs on various library functions.						
TASK-3 (6H)						
1. Write a C program to calculate the factorial of a given number	CO1					
2. Fibonacci sequence is defined as follows: the first and second terms in the sequence						
are 0 & 1. Subsequent terms are found by adding the preceding two terms in the						
sequence. Write a Cprogram to generate the first n terms of the sequence.						
3. Write a program to find the roots of a Quadratic equation.						
TASK-4 (6H)						
1. Write a program to generate the series of prime numbers in the given range.	CO 2					
2. Write a program to reverse the digits of a number.						

3. Write a C program to find the sum of individual digits of a positive integer.						
TASK-5 (3H)						
1 Write a program to check for number palindrome	CO_2					
2. Write a program to find the maximum of a set of numbers	02					
3. Write a C program to find the GCD (greatest common divisor) of two given integers						
TASK-6 (3H)						
1. Write a program to find the sum of positive and negative numbers in a given set of	CO 3					
numbers.						
2. Write C code to reverse the elements of the array. For example, [1,2,3,4,5] should						
become						
[5,4,3,2,1]						
3. Write a C program to find factorial of a given integer number using recursion						
TASK-7 (6H)						
1. Write a C program that use pointers to find Addition of Two Matrices	CO 3					
2. Write a C program that use functions to find Multiplication of Two Matrices						
TASK-8 (3H)						
1. Write a program to accept a line of characters and print the number of Vowels,	CO 3					
Consonants, blank spaces, digits and special characters.						
2. Write a C program to check whether a given string is a palindrome or not, without						
using anybuilt-in functions.						
TASK-9 (6H)						
1. Illustrate the use of auto, static, register and external variables.	CO 4					
2. Write a program to read and print student information using structures						
3. Write a C program to define a union and structure both having exactly the same						
numbers using the size of operators print the size of structure variables as well as union						
variable						
TASK-10 (6H)						
1. Write a program to split a "file" into two files, say file1 and file2. Write lines into	CO 4					
the 'file' from standard input. Read the contents from 'file' and write odd numbered						
lines into file1 and even numbered lines into file2.						
2. Write a program to merge two files.						

Additional Experiments:						
TASK-1						
 Programs on bitwise operators. Programs on bit fields. 	CO4					
TASK-2						
 Write a program to read a set of strings and sort them in alphabetical order. Programs on implementation of structures using files. 	CO 4					

Virtual Labs:

1. Problem Solving Lab (IIIT HYDERABAD) : <u>http://ps-iiith.vlabs.ac.in/</u>

List of Experiments

1. Numerical Representation	6. Recursion
2. Beauty of Numbers	7. Advanced Arithmetic
3. More on Numbers	8. Searching and Sorting
4. Factorials	9. Permutation
5. String Operations	10.Sequences
2. Computer Programming Lab (IIIT HYDERAE	AD) : <u>http://cse02-iiith.vlabs.ac.in/</u>
List of Ex	periments
1. Numerical Approximation	6. Basic Control Flow
2. Functions	7. Pointers
3. Advanced Control Flow	8. Recursion
4. Arrays	9. Expression Evaluation
5. Structures	

Text Book(s):

- 1. "How to Solve it by Computer", R.G. Dromey, 2014, Pearson.
- 2. Programming in C and Data Structures, J.R.Hanly, Ashok N. Kamthane and A.Ananda Rao, Pearson
 - Education, 1st Edition, 2010.

Reference Book(s):

1. "The C Programming Language", Brian W. Kernighan, Dennis M. Ritchie, 2nd Edition, Pearson.

- 2. "Let us C", Yeswant Kanetkar, BPB publications
- 3. "Pointers in C", Yeswant Kanetkar, BPB publications, 16th Edition, 2017
- 4. Computer Science, A Structured Programming Approach Using C by Behrouz A. Forouzan& Richard
 - F. Gilberg, 3rd Edition, Cengage Learning
- 5. C Programming A Problem-Solving Approach, Behrouz A. Forouzan & E.V. Prasad, F. Gilberg, 3rd

Edition, Cengage Learning

- 6. Programming with C RemaTheraja, Oxford, 2018
- 7. Programming in C, 3rd Edition, 2015, Ashok N. Kamthane, Pearson Education
- 8. Programming in C, 3/e : A Practical Approach by Ajay Mittal, Pearson Publication
- 9. Problem Solving with C by SOMASHEKARA, M. T., GURU, D. S., MANJUNATHA, K. S., PHI Learning, 2nd Edition, 2018
- 10. C Programming with problem solving, J.A. Jones & K. Harrow, Dreamtech Press, 2001

11. Byron Gottfried, Schaum's Outline of Programming with C, 4th Edition, 2018, McGraw-Hill

Web Resources:

- 1. https://www.includehelp.com/c-programs/advacnce-c-examples.aspx
- 2. <u>https://www.programiz.com/c-programming/examples</u>
- 3. https://www.javatpoint.com/c-programs
- 4. https://www.w3resource.com/c-programming-exercises/
- 5. https://www.sanfoundry.com/simple-c-programs/
- 6. https://www.includehelp.com/c-programming-examples-solved-c-programs.aspx
- 7. http://www.c4learn.com/c-programs/tag/c-programs-typical-programs

NARAYANA ENGINEERING COLLEGE:NELLORE

20EN1501			ENGL	JSH LAN	IGUAGE	LAB		R2020			
I-B.Tech	Н	ours / We	ek	Total	Credit		Max Mar	rks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
I-Semester	0	0	3	48	1.5	40	60	100			
Pre-requisite: Basic English Grammar											
 Course Objectives: To expose the students to develop knowledge and awareness of English phonetics be able to read and produce phonemic transcriptions To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm To develop strategies appropriately to improve one's ability to listen and Use listening skills to create more effective, less confrontational, more productive professional and personal communication To demonstrate his/her ability to write error free written communication To distinguish main ideas from specific details and make use of contextual clues to infer meanings of unfamiliar words from context To provide a structured methodology for participants to prepare and deliver an effective, high impact presentation that meets the objectives and brings results 											
Course O	utcomes: A	After succ	essful com	pletion of	the course.	, the stude	nt will be a	able to:			
CO 1	Understa of Englis	nd how sp h phonetic	beech sound s and phot	ds are used nology to i	l to create mprove the	meaning. A eir own pr	Apply their onunciatio	r knowledge on.			
CO 2	Recogniz groups ar audience	e and use nd Speak o	pitch patte confidently	erns to sign and intell	nal complet igibly with	te and inco in groups	and before	ought e an			
CO 3	Discuss a writing a	nd respor	d to conten	nt of a lect and predic	ure or liste tions abou	ning passa t spoken d	ige orally a liscourse	and/or in			
CO 4	Produce write a paragrap	coherent a	and unified	paragraph	ns with ade	quate supp cluding ser	port and de	etail and can			
CO 5	To help t exams su	he studen ch as GRI	ts to cultiva E, TOEFL	ate the hab GMAT e	it of readir tc.	ng passage	s for comp	petitive			
CO 6	Learn, pr with clari	actice and ity and ena	l acquire th able them t	ne skills ne o prepare	cessary to resume wi	deliver eff th cover le	fective, pre etter.	esentation			

CO-PO Mapping														
	РО											P	PSO	
CO	Р	P	PO	PS	PSO 2									
	01	0 2	3	4	5	6	7	8	9	10	11	12	0 1	
CO1	1									3		2		
CO2	1									2		3		
CO3	1									3		3		
CO4	1									2		3		
CO5	1									3		3		
CO6	1									3		3		
	1: Low, 2-Medium, 3- High													

COURSE CONTENT						
Module - 1	8 hrs					
Introduction to Phonetics :						
Introduction to Sounds of Speech – Vowels – Consonants -						
Listening with a focus on pronunciation						
Reading Newspaper – Highlighting Vowels and Consonants						
Module – 2	8 hrs					
Syllabification:						
Word Stress, Rules of word stress	000					
Practice on Intonation and Stress	CO2					
Module – 3	8 hrs					
Listening Skills :						
Types of Listening Skills						
Active listening and anticipating the speaker	CO3					
Listening for Specific & General Details						
Listening Comprehension						
Module – 4	8 hrs					
Defining & Describing: Objects, Places and Events						
Video Speech Writing	CO4					
Review Writing (Books / Movies / Productsetc.,)						
Module – 5	8 hrs					
Reading Comprehension						
Everyday English – Grammar, Vocabulary, LSRW Skills,						
Summarizing and Note making	CO5					
Vocabulary Building						
Module – 6	8 hrs					
IAM	0 11 3					
Role Play						
Giving and Asking Directions	CO6					
Information Transfer						

Reference Books:

- A Textbook of English Phonetics for Indian Students 2nd Ed T. Balasubramanian.(Macmillian),2012
- Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- English Pronunciation in Use. Intermediate & Advanced, Hancock, M. 2009. CUP
- Rizvi, Ashraf. M., Effective Technical Communication, Mc Graw Hill, New Delhi. 2005
- Raman, Meenakshi & Sangeetha Sharma. Technical Communication: Principles and Practice, Oxford University Press, New Delhi. 2011.

Web Resources:

- Grammar/Listening/Writing 1-language.com
- <u>http://www.5minuteenglish.com/</u>
- <u>https://www.englishpractice.com/</u> Grammar/Vocabulary
- English Language Learning Online
- <u>http://www.bbc.co.uk/learningenglish/</u>
- <u>http://www.better-english.com/</u>
- <u>http://www.nonstopenglish.com/</u>
- <u>https://www.vocabulary.com/</u>
- BBC Vocabulary Games
- Free Rice Vocabulary Game <u>Reading</u>
- https://www.usingenglish.com/comprehension/
- <u>https://www.englishclub.com/reading/short-stories.htm</u>
- <u>https://www.english-online.at/</u> <u>Listening</u>
- <u>https://learningenglish.voanews.com/z/3613</u>
- http://www.englishmedialab.com/listening.html_ Speaking
- <u>https://www.talkenglish.com/</u>
- BBC Learning English Pronunciation tips
- Merriam-Webster Perfect pronunciation Exercises
 <u>All Skills</u>
- <u>https://www.englishclub.com/</u>
- <u>http://www.world-english.org/</u>
- <u>http://learnenglish.britishcouncil.org/</u>

Online Dictionaries

- Cambridge dictionary online : <u>https://dictionary.cambridge.org/</u>
- MacMillan dictionary : <u>https://www.macmillandictionary.com/</u>
- Oxford learner's dictionaries : <u>https://www.oxfordlearnersdictionaries.com/</u>

NARAYANA ENGINEERING COLLEGE::NELLORE

DEPARTMENT OF ELECTRICAL & ELETRONICS ENGINEERING

SEMESTER II

Subject	Category	Course Title	C	onta pei	ct Pei r wee	riods k	Credits	Scheme of Examination Max. Marks			
Code	89		L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks	
20MA1003	BS	Vector Calculus Complex Variables and Transforms		1	0	4	4	40	60	100	
20CH1001	BS	Chemistry	3	0	0	3	3	40	60	100	
20ES1002	ES	Basic Electrical Circuits		0	0	3	3	40	60	100	
20ES1007	ES	Introduction to Python Programming		0	0	2	2	40	60	100	
20CH1501	BS	Chemistry Lab		0	3	3	1.5	40	60	100	
20ES1507	ES	Basic Electrical Circuits Lab		0	2	2	1	40	60	100	
20ES1504	ES	Engineering Graphics Lab	0	1	4	5	3	40	60	100	
20ES1510	ES	Introduction to Python Programming Lab	0	0	2	2	1	40	60	100	
20EN1502	HS	Oral Communication skills lab	0	0	2	2	1	40	60	100	
		Counseling/Mentoring	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme		During the Seme			ster 20 I		20 Points	Points	
		Total	11	2	16	29	19.5	360	540	900	

NARAYANA ENGINEERING COLLEGE: NELLORE											
20MA1003	VE	CTOR C.	ALCULU	S, COME	PLEX VA	RIABLE	S &	R2020			
		Т	RANSFO	DRMS (V	C-CV&TS	5)					
I-B.Tech	He	ours / Wee	ek	Total	Credit		Max Mai	:ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II-Semester	3	1	0	64	4	40	60	100			
Pre-requisite: Intermediate Mathematics											
Course Objectives:											
1. To il	1. To illustrate the physical interpretation of gradient, divergence and curl.										
2. To aj	pply the ba	asic conce	epts of ve	ctor integr	ation and	their appl	lications.	1			
3. To a	cquire the	knowledg	ge on the	calculus o	f function	s of comp	plex variat	ples.			
4. 10 u	nderstand	the conce	pts of La	place trans	storms and	d its prop	erties.	1.00 (1)			
5. 10 a	pply the	concepts	of Lapla	ce, transf	orm to se	olve the	ordinary	differential			
equa	uons. ndorator d	the conc	onto of Ec	union comi	a and Ea	union trop	aforma on	d :+a			
0. 10 U		the conco	epts of FC	burier serie	es and Fo	urier tran	storms an	d 118			
prop	erties.										
Course Out	tcomes: A	fter succe	essful con	npletion o	f the cours	se, the stu	dent will	able to:			
CO 1	Utilize di	ifferent op	perators su	ich as grad	ient, curl a	and diverg	gence find	the function			
	BL-3										
CO 2	Evaluate	area and	volumes	by fundam	ental theo	rems of v	ector integ	grationBL-			
	5										
CO 3	Apply the	e complex	functions	s, Cauchy'	s integral '	Theorem	to find the	integral			
	values Bl	L-3									
CO4	Solve the	different	ial equatio	on by using	Laplace t	ransforms	s and its tee	chniques			
	BL-3										
CO 5	Apply the	e Inverse l	Laplace tra	ansforms t	echniques	to covert	into time I	Domaine			
	BL-3		-		-						
CO 6	Find the	Fourier 3	Series and	l Fourier	Transform	for the	given fun	ctionsBL-			
	2						-				

	CO-PO Mapping													
		PO PSO												
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2										PSO1	PSO 2
CO2	3	2	2										3	
CO3	3	3	1										3	
CO4	3	3	2										2	
CO5	3	3	2										3	2
CO6	3	3	2										2	2
	1- Low, 2-Medium, 3- High													

	COURSE CONTENT					
MODULE – 1	Vector Differentiation	8 H				
Introduction to vector differentiation, Definition of Scalar and Vector point functions, Definition of Vector differential operator, Gradient of a Scalar point function- Definition of Gradient of a scalar point function and properties (without proof), Definition of Directional Derivative, Definition of level surface, Different Problems, Divergence of a Vector point function- Definition, Definition of Solenoidal vector and problems, Curl of a vector point function- Definition of Curl, definition of Irrotational vector, Problems, Laplacian operator- Definition and related problems, Vector Identities- Statements(without proof)						
At the end of the 1. Apply de 2. Understa 3. Illustrate 4. Calculate 5. Apply Ve	Module 1, students will be able to: l to scalar and vector point function BL-3 nd the concepts of Vector Differentiation BL-2 the physical interpretation of gradient, divergence a directional derivatives and gradients BL-1 ector Differentiation concepts in fluid mechanics proble	nd curl. BL-2 ems BL-3				
MODULE -2	Vector Integration	8 H				
Introduction to Explanation, p (without proof) (without proof) divergence The (without proof) At the end of th 1. Find the 2. Evaluate 3. Apply Gr integrals 4. Use the C a Vector 5. Evaluate BL-5 6. Apply Stol BL-3	o vector integration, Line Integrals-Explanation, Wo roblems, Surface Integral-Explanation and formula o, Problems, Volume integral- Explanation and formula o, Problems, Green's Theorem-Statement (without pre- eorem- Statement (without proof), Problems, Stake' o, Problems. e Module 2, students will be able to: work done in moving a particle along the path over a feather rate of fluid flow along and across curves BL- eeen's, Stokes and Divergence theorem in evaluation of BL-3 Gauss divergence theorem to give a physical interpretation field. BL-3 the line integrals along simple closed curves on the Pla- kes' theorem to give a physical interpretation of the cu	ork done by a Force- for surface integrals ila for volume integral oof), Problems, Gauss s-Theorem-Statement orce field BL-1 5 f double and triple tion of the divergence of ane by Green's Theorem rl of a vector field.				
MODULE-3	Complex Variable	Hours: (11L+4T)				
complex variate variable-definite problems, anal equations in c equations in p functions- definite applications to complex integ statement(withe problems, zero cauchy's reside	bles- differentiation: introduction to complex variable ion, limit and continuity of a complex function, deriv- ytic function & harmonic functions- definitions, pro- artesian coordinates-statement (without proof), pro- olar coordinates-statement (without proof), problem finition, problems, milne thomson method- wor- flow problem- problems. complex variables- integ- ration, line integration-definition, problems, cauch- out proof), problems, cauchy's integral formula- sta- s of analytic functions, singularities, poles. residues- ue theorem- statement (without proof), problems. ev ∞ 2π	s, functions of complex vative of f(z)-definition, oblems, cauchy-riemann blems ,cauchy-riemann s , conjugate harmonic rking rule, problems, gration: introduction to hy's integral theorem- tement (without proof), -definition, explanation. aluation of integrals of				

the type: (a) improper real integrals $\int f(x)dx$ (b) $\int f(\cos\theta,\sin\theta)d\theta$.							
At the end of the Module 3, students $w^{-\infty}$ ill be able to: ⁰							
1. Understand the functions of complex variable and its properties. BL-2							
2. Find derivatives of complex functions. BL-1	2. Find derivatives of complex functions. BL-1						
3. Understand the analyticity of complex functions. BL-2							
4. Understand the concept of differentiability, limit, continuity of complex functions and	1						
be able to calculate limits of standard complex functions BL-2							
5. Apply Cauchy's integral theorem and Cauchy's integral formula in engineering							
problems. BL-3							
6. Understand singularities of complex functions. BL-2							
MODULE-4 Laplace I ransforms 8 H							
Translation (or) First Shifting theorem, Problems. Second Translation (or)Second Shifting theorem, Problems. Change of scale property, Problems. L.T. of derivatives, Problems. L.T. of integrals, Problems. Multiplication by 't', Problems. L.T. of Division by 't', Problems. Evaluation of integrals by L.T. L.T. of some special functions- Unit Step Function or Heaviside's Unit Function- Definition, problems. Unit Impulse Function or Dirac Delta function- Definition, problems. Laplace Transform of Periodic Functions- Statement (without proof). Problems.							
At the end of the Module 4, students will be able to:							
1 Understand the concepts of Laplace transforms and convert into time to frequency							
demine BL-2							
2. Apply Laplace transform techniques to solve Ordinary differential equations BL-3							
3. Understand and recall the properties of the Heaviside (unit step) function and its							
applications BL-2							
4. Solve the application of Dirac Delta function by using its properties BL-3							
MODULE-5 Inverse Laplace Transforms 8 H							
Definition of Inverse Laplace Transforms, Inverse Laplace Transforms of standard Functions (without proof), Problems. Use of Partial Fractions to find Inverse Laplace Transform- problems. First Translation (or) First Shifting theorem- Statement (without proof), problems. Second Translation (or) Second Shifting theorem Statement (without proof), Problems. Change of scale property- Statement (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems. Inverse L.T of derivatives- Statement (without proof), problems. Inverse Statement (without proof), problems. Multiplication by Powers of 's'-Statement (without proof), Problems. Division by 's'-Statement (without proof), problems. Convolution theorem-statement (without proof), problems, Applications to Ordinary Differential Equations-Working method Explanation problems							
At the end of the Module 5, students will be able to:							
1. Understand the concepts of inverse Laplace Transforms and convert into frequency to time domine)						
2 Solve the wave functions by inverse Laplace transforms RL 2							
3 Apply the Convolution Theorem to obtain inverse Laplace transforms RI_3							
4 solve the higher order differential equations in limiting case condition by invers Land	ace						
transforms BL-3							
MODULE-6 Fourier Series and Fourier Transforms 8 H							
Fourier Series and Fourier Transforms 011							

Fourier Series: Introduction to Fourier Series, Periodic function-definition, properties(without proof), Euler's formulae(without proof), Dirichlet's conditions, Fourier series in $[0,2\pi]$ -formula (without proof), Problems, Fourier series in $[-\pi,\pi]$ - formula(without proof), Problems, Fourier series for even and odd functions in $[-\pi, \pi]$ -formula(without proof), Problems, Half -Range Fourier sine series in(0, π)- Formula(without proof), Problems, Half -Range Fourier cosine Series in(0, π)- Formula (without derivation), Problems. Fourier Transforms: Introduction to Fourier Transforms, Fourier integral theorem Statement (without proof), Fourier sine and cosine integrals formula(without proof) problems, Fourier Transform formula &Inverse Fourier Transform formula (without proof), Properties of Fourier Transforms (without proof), problems, Fourier Sine Transform formula & Inverse Fourier Sine Transform formula (without proof), problems, Fourier Cosine Transform formula & Inverse Fourier cosine Transform formula(without proof), problems.

At the end of the Module 6, students will be able to:

- 1. Find the Fourier series expansion of the given function. BL-1
- 2. Apply Fourier series and its properties of various engineering problems. BL-3
- 3. Find the periodic solutions to the differential equation by using Fourier series. BL-1
- 4. Understand the properties of periodic functions, represent it as a Fourier BL-2
- 5. Apply the concepts of Fourier transforms to Find impulse BL-3
- 6. Make use of the Fourier transforms and its inverse in practical applications of electronics engineering. BL-3

Total hours 48 H

Complex Fourier series

- 1. Complex Fourier series
- 2. Parseval's Identity for Fourier Transforms

Self-Study:

Contents to promote self-Learning:

SNO	Topic	CO	Reference
1	Vector	CO1	https://youtu.be/a19x_YG0oLg
	Differentiation		
2	vector integration	CO2	https://youtu.be/pfCwRLK29h4https://youtu.be/
			<u>KHiw9Vs-aLM</u>
3	Laplace transforms	CO3	https://youtu.be/luJM137-
			nsohttps://youtu.be/EDVJotmT584
4	Inverse Laplace	CO4	https://youtu.be/9NqdBXNyJPkhttps://youtu.be/0Zl
	transforms		<u>ThUd-yyw</u>
5	Fourier series	CO5	https://youtu.be/4cSZDHxyBf4
6	Fourier transforms	CO6	https://youtu.be/GtXmS5YH7XM

Text Book(s):

- 1. B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers.
- 2. N.P. Bali and Manish Goyal, "A Text Book of Engineering Mathematics", Laxmi Publication.
- 3. Ramana B.V., "Higher Engineering Mathematics", McGraw Hill Publishers

Reference Book(s):

- Erwin Kreyszig, "Advanced Engineering Mathematics", John Wiley.
 Veerarajan T., "Engineering Mathematics", Tata McGraw-Hill.
- 3. Dr. M Anita, "Engineering Mathematics-I", Everest Publishing House, Pune.

Online Resources/ Web References:

- 1. http://keralatechnologicaluniversity.blogspot.in/2015/06/erwin-kreyszig-advancedmathematics-ktuebook-download.html engineering -
- 2. http://www.faadooengineers.com/threads/13449-Engineering-Maths-II-eBooks .
- 3. <u>http://www.efunda.com/math/math_home/math.cfm</u>
- 4. <u>http://www.ocw.mit.edu/resources/#Mathematics</u>
- 5. http://www.sosmath.com/
- 6. <u>http://www.mathworld.wolfram.com</u> /

NARAYANA ENGINEERING COLLEGE:NELLORE									
20CH1001	CHEMISTRY (COMMON TO ECE, EEE & CSE) R2020								
I-B.Tech	He	ours / We	ek	Total	Credit		x Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
II-Semester	3	0	0	48	3	40	60	100	
Pre-requis	ite: Nil								
Course Ob	jectives:								
1. To	1. To impart technological aspects of modern chemistry and its applications								
2. Ui	nderstands	s the chen	nistry beh	ind electro	ochemical	energy sy	stems		
3. To train the students on the principles and applications of polymers									
4. Learn analytical methods useful in characterization of compounds.									
Course	Jutcomo	s. After a	uccessfu	1 comple	tion of the	course t	ha studar	t will be able to:	
	Underst	and the fu	ndomonto				diet the e	terrature and	
COT	bonding	of motor	nuamenta	ii concept:	s of cheffin	stry to pre	edict the s	tructure and	
GO •	bonding of materials (BL-1)								
CO 2	Inter the	e knowled	ge about	various ki	nds of elec	ctro chemi	cal cells.	(BL-2)	
CO 3	Describe	e various	energy sto	orage devi	ces and en	nerging te	chnologie	es (BL-1)	
CO 4	Understa	and the m	echanism	and appli	cations of	different j	polymers	in electronic	
	devices(BL-2)								
CO 5	Familiar	ize the va	rious sou	rces of rer	newable er	nergy and	their harn	eshing (BL-2)	
CO 6	Apply t	he electro	magnetic	radiation	to the spe	ctroscopy	methods	for the analysis of	
	engineering (BL-3)								

	CO-PO Mapping													
СО	PO										PSO			
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO 2
	1	2	3	4	5	6	7	8	9	10	11	12	1	
CO1	3	2										1		
CO2	3	2					2					1		
CO3	3	1	2			1	2					2		
CO4	3	2				2	1					1		
CO5	3	1	1			2	1					2		
CO6	3	1										2		
					1: L	ow. 2	-Medi	um. 3-	- High	1				

COURSE CONTENT

MODULE – 1 STRUCTURE AND BONDING MODELS

8 hrs

Planks quantum theory, photo electric effect, dual nature of matter -Debroglies equation, Heisenberg uncertainty principle, molecular orbital theory – bonding in homo- and hetero nuclear diatomic molecules – energy level diagrams of O_2 and CO, etc. π -molecular orbital's of butadiene and benzene, calculation of bond order, crystal field theory – salient features – splitting in octahedral and tetrahedral geometry.

At the end of the Module 1, students will be able to:

1. Understand the fundamental concepts of chemistry to predict the structure, properties and bonding of Engineering materials.(BL-1)

2. Iillustrate the molecular orbital energy level diagram of different molecular species.(BL-2)

3. Apply crystal field theory for octa hydral and tetra hydral molecule.	(L3)
--	------

4. out line the planks quantum theory. (BL-2)

5.Explain heisen berg uncertainty principal.(BL-2)

MODULE -2	ELECTRO CHEMISTRY	8hrs

Electrode potential, EMF of an electrochemical cell,problems on emf Nernst equation;. Electrodes – concepts, reference electrodes (standard hydrogen, Calomel electrode, and glass electrode), potentiometry- potentiometric titrations (redox titrations), concept of conductivity, conduc to metric titrations (acid-base titrations), photovoltaic cell – working and applications.

At the end of the Module 2, students will be able to:

- 1. **Demonstrate** competency in the basic concepts of electrochemical cells.(BL-2)
- 2. **Explain** the significance of electrode potentials (BL-2)
- 3. **List** the different types of electrodes . (BL-2)
- 4. **Differentiate** between , potentiometric and conduct metric titrations. (BL-2)
- 5. **Illustrate** the construction of PV cell.(BL-2)
- MODULE-3

BATTERY TECHNOLOGY

7 hrs

Basic concepts, classification of batteries, Important applications of batteries, Modern batterieszinc air, lithium cells- Li ion cell, Li- MnO₂ cell, ni-cd cell, lead acid storage cell. Fuel cells Introduction - classification of fuel cells – hydrogen and oxygen fuel cell, methanol and oxygen fuel cell, SOFC - Merits of fuel cell

At the end of the Module 3, students will be able to:

- 1. Classify batteries into different types (BL-2)
- 2. Explain the concept involved in the construction of batteries . (BL-2)
- 3. Identify the significance of batteries. (BL-2)
- 4.Compare the merits of different fuel cells (BL-2)

MODULE-4	POLI	INIER CHEN	1151 K 1		9 nrs	
MODULE 4		MED CHEN	ALCTED V		0 1	
0	• 1		· · · ·			

Basic concepts of polymer, chain growth and step growth polymerization, coordination polymerization, copolymerization with specific examples and mechanisms of polymer formation. Plastics - Thermoplastics and Thermosetting, Preparation, properties and applications of –pvc, Bakelite, urea-formaldehyde, Nylons- Elastomers–Buna-S, Buna-N–preparation, properties and applications. Conducting polymers – poly acetylene, poly aniline, mechanism of conduction and applications.

At the end of the Module 4, students will be able to:

- 1 Identify different types of polymers.(BL-3)
- 2. Distinguish between thermoplastic and thermo setting resins . (BL-2)
- 3. Explain the preparation, properties and applications of some plastic materials (BL-2)
- 4. Apply the knowledge of advanced polymers, conducting polymers for different applications(BL-3)

5. Outline the properties of polymers and various additives added and different methods of forming.plastic materials (BL-2)

• •				
MODULE-5	ENERGY SCIENCE	7 hrs		

fuels-classification of fuels characteristics solid fuels-coal, analysis of coal ,refining of petroleum, alternative and non conventional sources of Energy-solar, wind, Geo, Hydro power ,Bio mass advantages and disadvantages, Nuclear energy-Nuclear fission and fusion reactions Nuclear waste disposal

At the end of the Module 5, students will be able to:

- 1. Differentiate petroleumsynthetic petrol and have knowledge how they are produced (BL-2)
- 2. Elucidate alternative and non conventional energy resources. (BL-2)
- 3. Distinguish between Nuclear fission and fusion. (BL-2)

4.out line the fuel characteristics (BL-2)

5.Explain the nuclear waste disposal. (BL-2)

MODULE-6	INSTUMENTAL METHODS AND	9 hrs
	APPLICATIONS	

Electronic Spectroscopy –EMR, Beer-Lambert's law and its, Applications, instrumentation of UVvisiblespectrophotometer.*IR Spectroscopy* - Types of vibrations, Instrumentation of IR spectrophotometer and its applications. **Chromatography**-Introduction ,Principle and instrumentation of Gas Chromatography (GC) and thin layer chromatography, separation of gaseous mixtures and liquid mixtures

At the end of the Module 6, students will be able to:

- 1. Explain the different types of spectral series in electromagnetic spectrum (BL-2)
- 2 .Understand the principles of different analytical instruments (BL-2)
- 3 .Explain the different applications of analytical instruments (BL-2)
- 4 .Outline the beers lamberts law (BL-2)

Total hours: 48hours

Content beyond syllabus:

1. Band theory, vulcanization and compounding of rubber

Self-Study:

Contents to promote self-Learning:

SN	Торіс	Reference
0		
1	Molecular orbital theory	https://www.youtube.com/watch?v=FMxuss0RXOU
2	Reference electrodes	https://www.youtube.com/watch?v=WMfXlncyMDc
3	battreies	https://nptel.ac.in/courses/103/108/103108162/
4	plastics	https://www.youtube.com/watch?v=FATc12opDCA
5	Non conventional energy recourses	https://swayam.gov.in/nd1_noc20_ge06/preview
6	Fundamentals of spectroscopy	https://swayam.gov.in/nd1_noc20_cy08/preview

Text Book(s):

- 1. P. C. Jain & Monika Jain, Engineering Chemistry, Dhanpat Ray Publishing Company
- 2. K. N. Jayaveera, G. V. Subba Reddy and C. Ramachandraiah, *Engineering Chemistry*, McGraw Hill Publishers, New Delhi.

3. Energy scenario beyond2100, by S. Muthu Krishna Iyer.

Reference Book(s):

- 1. J. D. Lee, Concise Inorganic Chemistry, Oxford University Press, 5th edition 2010.
- 2. Skoog and West, Principles of Instrumental Analysis, Thomson, 6th edition, 2007.

3. Peter Atkins, Julio de Paula and James Keelar, *Atkins' Physical Chemistry*, Oxford University Press, 10th edition, 2010.

Online Resources Web Resources:

- 1. https://drive.google.com/file/d/0Bz82vSA0C1xlWC11WkpsTmlwQVk/view
- 2. https://www.cgaspirants.com/2017/08/engineering-chemistry-by-jain-jain.html
- 3. https://www.pdfdrive.com/concise-inorganic-chemistry-d33405948.html
- 4. https://chemistry.com.pk/books/skoog-principles-of-instrumental-analysis1/
- https://www.thermalfluidscentral.org/e-books/book-intro.php?b=39 file:///C:/Users/DELL/Downloads/HandbookOfInstrumentalTechniquesForAnalyticalChe mistryPDFDrive.com.pdf
- 3. https://nptel.ac.in/courses/104/106/104106096/
- 4. https://youtu.be/KHh_IX1G6uA
- 5. https://www.youtube.com/watch?v=MfbxR9ZDs0s&feature=youtu.be
- 6. .https://nptel.ac.in/courses/113/105/113105028/
- 7. https://www.youtube.com/watch?v=15MY7abeCDk
- 8. https://www.youtube.com/watch?v=UeGJpwC1aiQ&feature=youtu.be

NARAYANA ENGINEERING COLLEGE:NELLORE														
20ES1002		BASIC ELF			LECT	ECTRICAL CIRCUITS					R2020			
I-B.Tech		Hours / Week			Т	otal	Cred	it	Max Mar			ırks		
		L	Т		Р	ł	nrs	C	l ,	CIE		SEE	ТО	TAL
II-Semeste	er	3	0		0	4	48	3		40		60	1	00
Pre-requi	Pre-requisite: Fundamental of mathematics and physics													
Course Objectives:														
1.	1. To study the basics of circuit analysis.													
2.	To st	tudy t	he ma	gnetic	circu	its.								
3.	3. The concepts of real power, reactive power, complex power, phase angle and													
	phas	e diff	erence	2.										
4.	4. To understand frequency response in electrical circuits.													
5. To understand the concept of graphical solution to electrical network.														
6. To impart knowledge on solving circuit equations using network theorems.														
Course O	utcon	nes: A	After s	ucces	sful o	compl	letion	of the	e cour	se, the	e stude	ent wi	ll be at	ole to:
CO 1	1 Apply the basics of circuit analysis.(BL-3)													
CO 2	Analyze the behaviour of magnetic circuit.(BL-4)													
CO 3	Explain the fundamentals of AC circuits.(BL-2)													
CO 4	Analyze AC circuits along with resonance and locus diagrams.(BL-4)													
CO 5	Analyze an electric network using graph theory and different network (BL-4)													
CO 6	Anal	yze tł	ne elec	trical	circuit	ts usir	ng vari	ous ne	etwor	k theo	rems.	(BL-4)		
					C	O-PC) Map	ping						
CO						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
<u>CO1</u>	2	2	3	4	5	0	7	8	9	10	11	12	1	<u>2</u>
$\frac{CO1}{CO2}$	3	1	1		1							5	$\frac{3}{2}$	1
	3	3	3	3		1							2	3
	3	3	3	3		1							2	3
CO4	2	2	2	5										3
	3	3	2										2	2
006	3	3	3						<u> </u>				2	2
1: Low, 2-Medium, 3- High														
COLIDSE CONTENT														
		<u> </u>								Done	.			Current
ICITCUIT CON	ucept.	. К. I	and (. Para	imere	rs - Ir	ndebe	ndent	and	Dener	ident	voita	ve and	urren

Circuit Concept, R, L and C Parameters - Independent and Dependent Voltage and Current Sources -Source Transformation, Voltage - Current Relationship for Passive Elements (For Different Input Signals: Square, Ramp, Saw Tooth, Triangular). Kirchhoff's Laws, Network Reduction Techniques: Series, Parallel, Series Parallel, Star-to -Delta or Delta-to-Star Transformation. Examples

At the end of the Module 1, students will be able to:

1. Find the series and parallel connections in a circuit.(BL-2)

2. Apply various techniques to analyze an electric circuit. (BL-3)

3. Find the behaviour of an electrical circuit.(BL-2)

MODULE -2	INTRODUCTION TO MAGNETIC CIRCUITS	7hrs				
Faraday's Laws of Electromagnetic Induction, Concept of Self and Mutual Inductance, Dot						
Convention, Coefficient of Coupling, Composite Magnetic Circuit-Analysis of Series and Parallel						
Magnetic Circuits, MI	MF Calculations.					
At the end of the Mo	dule 2, students will be able to:					
1. Explain the l	aws of electromagnetic induction. (BL-2)					

2. Explain the dot convention technique.(BL-2)

3. Explain the sel	Inductance and mutual Inductance. (BL-2)					
MODULE -3	SINGLE PHASE AC CIRCUITS	9hrs				
R.M.S, Average Valu	es and Form Factor for Different Periodic V	Vave Forms: Sinusoidal				
Alternating Quantitie	s. Phase and Phase Difference, Complex	and Polar Forms Of				
Representations, j-Notation, Steady State Analysis of R, L and C (In Series, Parallel and Series						
Parallel Combination) With Sinusoidal Excitation, Concept of Pc	ower Factor, Concept of				
Reactance, Impedanc	e, Susceptance and Admittance-Real and Reac	tive Power and Complex				
Power. Examples.						
At the end of the Mod	Ile 3, students will be able to:					
1. Understand t	ne advantages of single phase AC system. (B	3L-2)				
2. Explain the co	mplex and polar forms representation.(BL-2	2)				
3. Find the AC cir	cuits in order to determine the voltage, current	t and power for the given				
problem. (BL-2						
MODULE -4	RESONANCE & LOCUS DIAGRAMS	8hrs				
Resonance: Introduct	on, Definition of quality factor Q of induct	or and capacitor, Series				
resonance, Bandwidth	of the series resonant circuits, Parallel reson	ance (or anti-resonance),				
Conditions for maxim	um impedance, Currents in parallel resonance	, , Bandwidth of parallel				
resonant circuits. Gen	eral case of parallel resonance circuit. Locus diag	rams of RL & RC circuits				
At the end of the Mod	ule 4 students will be able to:	,				
1 Fyn	ain AC circuits along with resonance and lo	cus diagrams (BL -2)				
2 Uno	arstand the offect of resonance on series	and parallel reconance				
	(PL 2)	and paramet resonance				
		$(\mathbf{D}\mathbf{I},\mathbf{Q})$				
	and the frequency response for a resonant ch	Cuits.(BL-2)				
NODULE -5	ANALYSIS OF NETWORK TOPOLOGY	8Hrs				
Definitions – Graph	- Tree, incidence Matrix, Basic Cutset and Tr	leset matrices for planar				
Dependent and Inden	and ant Voltage and Current Sources and DC S	2 AC Excitations - Duality				
Dependent and Independent Voltage and Current Sources and DC & AC Excitations - Duality						
ATTUDUAT NELWOTKS. At the end of the Module 5, students will be able to:						
1 Understand the overview of tenelosy for a siver retrievely (PL 2)						
1. Understand the overview of topology for a given network. (BL-2)						
2. Find the g	aph for the given electrical network. (BL-2)					
3. Apply graph	theory to solve network equations. (BL-3)					
MODULE-6	NETWORK THEOREMS	Shrs				
Super position theor	em, Compensation theorem, Thevenin's theo	orem, Norton's theorem,				
Maximum power tra	nsfer theorem, Tellegen's theorem, Millmar	n's theorem, Reciprocity				
theorem; Application	of network theorems in solving DC and AC circuit	ts.				
At the end of the Mod	ile 6, students will be able to:					
1. Understand the way of approaching to solve for a given network. (BL-2)						
2. Solve theorems	Ior mining the solutions of network problem.(B	L-3)				
5. Explain the ap		Total hours: 48 hours				
Content beyond sylla	ous:					

Three Phase circuits and its Importance in Electrical Engineering.
 Real time applications of network theorems.

Self-Study:

Contents to promote self-Learning:

	1	6	
SNO	Торіс	Reference	
	1		
---	---	--------------------------------	--
	1	Introduction to the electrical	https://nptel.ac.in/courses/11//106/11/106108/
		circuit	
	2	Introduction to the magnetic	https://nptel.ac.in/courses/108/105/108105053/
		circuit	
ſ	3	Single phase AC circuit	https://nptel.ac.in/courses/108/105/108105053/
	4	Locus diagram and	https://nptel.ac.in/courses/108/105/108105112/
		resonance	
	5	Analysis of electrical circuit	https://nptel.ac.in/courses/108/105/108105159/
		and Graph theory	
F	6	Network theorem	https://nptel.ac.in/courses/117/106/117106108/
	-		<u> </u>

1. A Sudhakar and Shyam Mohan S P, "Circuits and Networks: Analysis and Synthesis", TMH, 5th Edition, New Delhi, 2015.

2. Ravish R., Network Analysis and Synthesis, 2/e, McGraw-Hill, 2015

Reference Book(s):

1. S.Sivanagaraju, G.Kishore & C.Srinivasa Rao, "Electrical Circuit Analysis", Cengage Learning, 1st Edition, 2010.

2. A. Chakrabarti : Circuit Theory (Analysis and Synthesis), Dhanpat Rai & Co

3. Joseph A. Edminister and Mahmood Nahvi, "Electric Circuits Schaum's Outline Series", 6th Edition, Tata McGraw-Hill, 2014, New Delhi.

4. Electric Circuits by N.Sreenivasulu, REEM Publications

Online Resources / Web Reference:

1. https://nptel.ac.in/courses/108/105/108105159/

2. https://nptel.ac.in/courses/108/102/108102042/

3. https://nptel.ac.in/content/storage2/courses/108105053/pdf/L-21(TB)(ET)%20((EE)NPTEL).pdf

4. https://en.wikibooks.org/wiki/Circuit_Theory

5.<u>http://www.mathtutordvd.com/products/Engineering-Circuit-Analysis-Volume-1.cfm</u>

6.<u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-andelectronics-spring-2007/video-lectures/lecture-2/</u>

7. <u>http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Circuit/Circuit1.html</u>

8. <u>https://opencourses.emu.edu.tr/course/view.php?id=3</u>

NARAYANA ENGINEERING COLLEGE:NELLORE											
20ES1007	Introduction to Python Programming R2020										
I-B.Tech		Hours / W	eek	Total	Credit		Max Marks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II-Semester	2	0	0	32	2	40	60	100			
Pre-requisit	e: Know	vledge of N	Mathemati	cs and Bas	sic Progran	nming Laı	nguage				
Course Obj	ectives:										
1. To le	earn the fu	indamental	s of pythe	n.							
2. To ii	nplement	python pro	ograms for	condition	nal loops a	nd functio	ns.				
3. To h	andle the	compound	data using	g python	lists, tuples	s, sets, dict	tionaries.				
4. To le	earn the fi	les, modul	es, packag	es concept	ts.						
5. To ii	troduce t	he concept	s of class	and except	tion handli	ng using p	ython.				
6. To tr	ain in reg	gular expre	ession con	cepts.							
Course Out	comes: A	After succe	ssful comp	oletion of	the course	, the stude	ent will be	e able to:			
CO1	Summarize	e the funda	imental co	oncepts of	python pro	gramming	. (BL - 2)				
CO 2	Apply the	basic elem	nents and	constructs	the python	to solve l	ogical prob	olems.(BL-3)			
CO 3 (Organize d	lata using	different d	lata structu	res of pyth	non . (BL -	- 3)				
CO 4	mplement	t the files r	nodules a	nd package	es in progra	amming. (I	BL - 3)				
CO 5	Apply obj	ect oriente	d &excep	tion handli	ng concep	ts to build	simple app	olications.(BL-3)			
CO 6	mplement	t the conce	pts ofTurt	le Graphic	s. (BL - 3)					

	CO-PO Mapping														
	РО													PSO	
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	1	2											1		
CO2	2	3	1	2									1	1	
CO3	2	2	2	2	2							2	2		
CO4	2	2	2	1	1							1	3	2	
CO5	2	2	2	1								1	2	2	
CO6	2	1	2	1								1	2	2	
					1: Lov	v, 2-M	ledium	n, 3- H	ligh						

	COURSE CONTENT							
MODULE – 1	Introduction to Python	5H						
Introduction: His	story of Python, Features of Python Programming, Application	tions of Python						
Programming, Ru	nning Python Scripts, Comments, Typed Language, Identi	fiers, Variables,						
Keywords, Input/o	utput, Indentation, Data types, Type Checking, range(), format	(),						
Math module.								
At the end of the M	Iodule 1, students will be able to:							
1. Learn the ba	asics of python. (BL - 1)							
2. Write the p	(thon programs. (BL - 1)							
3. Understand	concept of type checking. (BL - 2)							
MODULE -2	Operators Expressions and Functions	5 H						
Operators and Expressions: Arithmetic, Assignment, Relational, Logical, Boolean, Bitwise,								
Membership, Identity, Expressions and Order of Evaluations, Control Statements.								
Functions: Introd	uction, Defining Functions, Calling Functions, Anonymou	us Function,						

Fruitful Functions and Void Functions, Parameters and Arguments, Passing Arguments, Types of Arguments, Scope of variables, Recursive Functions.

At the end of the Module 2, students will be able to:

- 1. Solve the problems using operators, conditional and looping. (BL 3)
- 2. Solve the problems using the functions. (BL -3)
- 3. Apply the principle of recursion to solve the problems. (BL-3)

MODULE-3Strings, Lists, Tuples, and Dictionaries6HStrings, Lists, Tuples, and Dictionaries: Strings-Operations, Slicing, Methods, List-
Operations, slicing, Methods, Tuple- Operations, Methods, Dictionaries- Operations,
Methods, Mutable Vs Immutable, Arrays Vs Lists, Map, Reduce, Filter, Comprehensions.6HAt the end of the Module 3, students will be able to:10

- 1. Write programs for manipulating the strings. (BL 1)
- 2. Understand the knowledge of data structures like Tuples, Lists, and Dictionaries.(BL 2)
- 3. Select appropriate data structure of Python for solving a problem.(BL -3)

MODULE-4	Files, Modules and Packages	6H							
Files, Modules and Packages: Files- Persistent, Text Files, Reading and Writing Files,									
Format Operator, File	Format Operator, Filename and Paths, Command Line Arguments, File methods,								
Modules- Creating M	odules, Import Statement, Form.Import Statement, name sp	acing,							
Packages- Introduction	n to PIP, Installing Packages via PIP(Numpy).								
At the end of the Modu	ule 4, students will be able to:								
1. Understand the	concepts of files. (BL - 2)								
2. Implement the	modules and packages. (BL - 3)								
3. Organize data i	n the form of files.(BL - 3)								
MODULE-5	Object Oriented Programming, Errors and Exceptions	5H							
OOP in Python: Obje	ect Oriented Features, Classes, self variable, Methods, Constru	uctors,							
Destructors, Inheritand	ce, Overriding Methods, Data hiding, Polymorphism.								
Error and Exceptions	s: Difference between an error and Exception, Handling Exce	ption, try							
except block, Raising	Exceptions.								
At the end of the Mod	lule 5, students will be able to:								
1. Apply object of	orientation concepts.(BL -3)								
2. Apply the exce	eption handling concepts. (BL -3)								
3. Implement OO	Ps using Python for solving real-world problems.(BL -3)							
MODULE-6	Turtle Graphics	5H							
Turtle Graphics: Move and Draw, Turtle Operations, Turtle object, Simple Graphics, The									
Vagrant, The Beautiful Patterns, Drawing with Colors.									
At the end of the Modu	At the end of the Module 6, students will be able to:								
1. Understand the	concepts of Turtle Graphics. (BL -2)								

2. Develop GUI applications using Python. (BL -3)

Total hours:48Hours

Content Beyond Syllabus: Testing, GUI Programming, Matplotlib, Databases.

Self-Study:

Contents to promote self-Learning:

001110	no to promote sen	2001
SNo	Module	Reference
		https://www.youtube.com/watch?v=WvhQhj4n6b8
1	Introduction to Python	https://www.youtube.com/results?search_query=History+of+Pyth on%2C+Features+of+Python+Programming%2C+Applications+ of+Python+Programming%2C+Running+Python+Scripts%2C+C omments+in+edureka

		https://www.youtube.com/watch?v=9F6zAuYtuFw
		https://www.youtube.com/watch?v=yHFcNNh-SsA
		https://www.youtube.com/watch?v=FuPHs7GLxq8
		https://www.youtube.com/watch?v=6yrsX752CWk
		https://nptel.ac.in/courses/106/106/106106145/
		https://www.youtube.com/watch?v=0Hp7AThTZhQ
		https://www.youtube.com/watch?v=fy10ci10R_g
		https://nptel.ac.in/courses/106/106/106106145/
		https://nptel.ac.in/courses/106/106/106106145/
	Operators, Expressions and Eunctions	https://www.youtube.com/watch?v=Pm9FOpOwhlA&t=143s
2		https://nptel.ac.in/courses/106/106/106106145/
4		https://www.youtube.com/watch?v=oSPMmeaiQ68&t=51s
	Strings,	https://nptel.ac.in/courses/106/106/106106145/
		https://nptel.ac.in/courses/106/106/106106145/
3	Lists, Tuples, and	https://nptel.ac.in/courses/106/106/106106145/
	Dictionaries	https://www.youtube.com/watch?v=MEPILAjPvXY
4	Files, Modules and Packages	https://nptel.ac.in/courses/106/106/106106145/
	Object Oriented Programming	https://nptel.ac.in/courses/106/106/106106145/
5	Errors and	
	Exceptions	
		https://www.youtube.com/watch'?v=WQIKPdKVXfw
6	Turtle Graphics	https://www.youtube.com/playlist?list=PLzgPDYo_3xumT2sfEL
		<u>R4_YV3aojaxkUC9</u>

- 1. VamsiKurama, Python Programming: A Modern Approach, Pearson, 2017.
- 2. Allen Downey, Think Python, 2ndEdition, Green Tea Press

Reference Books :

- R. Nageswara Rao, "Core Python Programming", 2nd edition, Dreamtech Press, 2019.
 Allen B. Downey, "Think Python", 2ndEdition, SPD/O'Reilly, 2016.
- 3. Martin C.Brown, "The Complete Reference: Python", McGraw-Hill, 2018.
- 4. Mark Lutz, Learning Python, 5th Edition, Orielly, 2013.
- 5. Wesley J Chun, Core Python Programming, 2nd Edition, Pearson, 2007
- 6. Kenneth A. Lambert, Fundamentals of Python, 1st Edition, Cengage Learning, 2015

Online Resources / Web Resources:

- 1. https://www.datacamp.com/learn-python-with-anaconda/
- 2. https://www.codecademy.com/learn/paths/data-science?
- 3. https://www.coursera.org/courses?query=python
- 4. https://www.edx.org/learn/python
- 5. https://training.crbtech.in/neo/online-it-training-programme.php?
- 6. https://www.tutorialspoint.com/python/index.htm
- 7. https://www.w3schools.com/python/
- 8. https://www.javatpoint.com/python-tutorial
- 9. https://www.learnpython.org/
- 10. https://docs.python.org/3/
- 11. Python Simplilearn: https://www.youtube.com/playlist?list=PLEiEAg2VkUUKoW1o-A-VEmkoGKSC26i_I
- 12. Python edureka: https://www.youtube.com/playlist?list=PL9ooVrP1hQOHY-BeYrKHDrHKphsJOyRyu
- 13. Python Notes for Professionals book : https://books.goalkicker.com/PythonBook/

	NARAYANA ENGINEERING COLLEGE:NELLORE										
20CH1501	CHEMISTRY LAB (COMMON TO ECE, EEE&CSE) R2020										
I-B.Tech	I	Hours / W	eek	Total	Credit	Max Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II-Semester	0	0	3	48	1.5	40	60	100			
Pre-requisit	te: Nil										
Course Obj	ectives: 7	The object	ive of the	laboratory	sessions i	is to enable	e the learn	ers to			
get hands-on	experien	ce on the p	orinciples	discussed	in theory s	essions an	d to under	rstand			
the application	ons of the	se concep	ts in engin	eering.							
Course Out	comes: A	After succ	essful co	mpletion	of the cour	rse, the stu	udent will	be able to:			
CO 1	Determir	ne the cell	constant a	and conduc	ctance of so	olutions					
CO 2	Perform	quantitativ	e analysis	using ins	trumental	methods					
CO 3	utilize the fundamental laboratory techniques for analyses such as titrations, separation/purification\ and Spectroscopy										
CO 4	analyze a	and gain ex	xperiment	al skill.							

CO-PO Mapping														
CO		PO											PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3													
CO2	3													
CO3	3													
CO4	3													
					l:Low	v, 2-M	lediun	n, 3- H	ligh					

COURSE CONTENT	CO
Task-1 : Conductometric itration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base	
Objective	
1. perform a conductometric titration of a mixture of strong acid and weak acid with a strong base,	CO2
2. determine the equivalence point of the titration by plotting titration curve using conductance values and amount of the base added during titration,	
3. state the advantages conductometric titrations,	
Task-2: Determination of cell constant and conductance of solutions	
Objective:	
1. To determine conductivity of the given water sample. by using conductivity meter	CO 1
2. To understand the specific conductance.	

Task-3- Verify Lambert-Beer's law	
Objective: 1.To use spectroscopy to relate the absorbance of a colored solution to its concentration.	CO 2
2. Toprepare a Beer's Law Plot to determine the concentration of an unknown.	
Task-4: pH metric titration of (i) strong acid vs. strong base, (ii) weak acid vs. strong base	
Objective:	
1. To perform a potentiometric titration of an acidic solution of known molarity.	
2. To graph the volume of base added vs the pH and to determine the equivalence point	CO 2
3. To calculate the molarity of the basic solution	
Task-5: Estimation of Ferrous Iron by Dichrometry.	
Objective:	
1. determine the percentage of ferrous iron in an unknown sample by redox titration with potassium dichromate solution.	CO 3
2. The student will pre-treat the sample to obtain the iron in the reduced(+2 oxidation) state.	05
3. The student will use a solution of primary standard as the titrant	
Task-6: Potentiometry - determination of redox potentials and emfs	
Objective:	
1. Determine the concentration of an unknown iron(II) solution. By using potentiometer	
2. Discuss how the potential changes with relative concentration of oxidised/reduced from,	CO 3
3. perform a redox titration of ammonium iron (II) sulphate using potassium dichromate as oxidizing agent,	
4. determine the equivalence point of the redox titration by plotting titration curve using potential change values and amount of oxidizing agent added during titration,	
Task-7 : Preparation of a polymer	
Objective: To prepare phenol formaldehyde resin. (Bakelite)	
1. Understand the differences between linear and cross linked polymers.	
2. Compare and contrast the recycling properties of linear and cross linked polymers.	CO 4
3. Compare the combustion properties of various types of material.	
4. Define the following terms: polymer, monomer, repeat unit, cross linking, biopolymer	
Task-8: Thin layer chromatography	
Objective:	CO 2

1. To separate spinach pigments using thin layer chromate graphy	
2. To describe the method of chromatography and its applications	
Task-9: Identification of simple organic compounds by IR	
Objective:	
1. To learn various function groups encountered in organic chemistry	
2. To learn important roll of IR spectroscopy in the study of structure of organic compounds	CO 3
3. To develop skill in the recognition of characteristic absorption bands	
4.to identify compound by an investigation of its IR spectrum	
Task-10 : Determination of Strength of an acid in Pb-Acid battery	
Objective:	
1. To determine the half –reactions involved in spontaneous oxidation –reduction reactions.	CO 4
2. Explain the function of the lead storage and dry cell batterieselectrolysis involving two lead strips immersed in sulfuric acid.	

Additional Experiments:	
Task-11: Measurement of 10Dq by spectro photometric method	
Objective	
 The purpose of the experiment is three-fold. First, the student verifies that the spectrochemical series based on this model are generally in poor agreement with experimental values obtained from visible spectra (3). However, because of the octahedral symmetry it is true that the splitting of the d levels predicted by crystal field theory is qualitatively correct. 	CO 4
Task-12 : Models of potential energy surfaces	
 Objective: 1. Distinguish between potential energies and potential energy surfaces (PESs). 2. Identify the saddle point, the reactant and product valleys and plateaus on the contour diagram of PESs 3. Distinguish between attractive and repulsive potential energy surfaces. 	CO4
Virtual Labs:	
 <u>http://vlab.amrita.edu/?sub=2&brch=190∼=338&cnt=1</u> <u>http://vlab.amrita.edu/?sub=2&brch=190∼=339&cnt=1</u> 	

3. <u>http://vlab.amrita.edu/?sub=2&brch=190&sim=606&cnt=1</u>

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	CO	Reference
1	Estimation of Ferrous Iron by Dichrometry.	CO 1	https://www.youtube.com/watch?v=Lxg ZsMhuyNM
2	Paper chromatography	CO 1	https://www.youtube.com/watch?v=NsI9 vJMphKk
	Preparation of polymer	CO 4	https://www.youtube.com/watch?v=PSS K5VGcC_0

Text Book(s):

- 1. A Textbook of Quantitative Analysis, Arthur J. Vogel.
- 2. Jain & Jain. Engineering Chemistry: Dhanapathrai Publications., 2015.

3.S.S.Dara, Experiments and Calculations in Engineering Chemistry: S-Chand Publications, Revised edition, 2008.

Reference Book(s):

1. S.K. Bhasin and Sudha Rani, "Laboratory Manual on Engineering Chemistry", Dhanpat Rai Publishing Company, New Delhi, 2nd edition.

2Sunitha Rattan, "Experiments in Applied Chemistry", S.K. Kataria & Sons, New Delhi, 2nd edition.

Web References:

- 1. https://nptel.ac.in/courses/122101001/23
- 2. https://nptel.ac.in/courses/104103071/39

	NA	RAYANA	ENGIN	EERING	COLLEG	E:NELLO	ORE	
20ES1507		BAS	SIC ELEC	TRICAL	CIRCUI	Г LAB		R2020
I-B.Tech		Hours / W	/eek	Total	Credit		Max Mar	`ks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
II-Semester	or 0 0 2 32 1 40 60 100							
Pre-requisi	ite: Netw	ork Ana	ysis					
Course Ob	jectives:							
1. Fundame	entals of C	Dhm's law	, Kirchho	ff's current	t and volta	ge laws a	nd its prac	tical
implementat	tion.							
2. Measuren	nent of vo	ltage, cur	rent, powe	r and impe	dance of a	ny circuit.		
3. Analysis	of a given	circuit de	pending o	n types of	elements.			
Course Ou	tcomes: .	After suce	cessful co	mpletion	of the cour	rse, the stu	udent will	be able to:
CO 1	Apply Pr	actical im	plications	of the fu	Indamenta	ls of Kirc	chhoff's c	urrent and
	voltage I	Laws						
CO 2	Familiar	with basic	electrical	measurem	nent instru	ments and	know how	v to use
	them to r	nake diffe	rent types	of measure	ements.			
CO 3	Practical	ly determi	ne band w	idth, Q-fac	ctor and ve	rify with t	heoretical	values.
CO 4	Apply su	itable theo	orems for c	circuit anal	ysis and v	erify the re	esults theory	retically.
CO 5	Analyze	the behav	ior of AC	circuts				

					C	O-PO) Map	ping						
CO						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	1		1	2		1		2	2	2
CO2	2	2	2	1	1		1	2		1		2	2	2
CO3	2	2	2	1	1		1	2		1		2	2	2
CO4	2	2	2	1	1		1	2		1		2	2	2
CO5	2	2	2	1	1		1	2		1		2	2	2
					l: Low	v, 2-M	lediun	n, 3- H	ligh					

COURSE CONTENT	СО
Task 1 - Verification of Kirchoff's laws	
Objective:	CO 1
To verify the KCL and KVL for a given circuit	
TASK-2 Determination of Self, Mutual Inductances and Coefficient of Coupling	
Objective:	CO 2
To determine the self and mutual inductances and coefficient of coupling for two	
inductive coils.	
TASK-3 Locus Diagrams of RL and RC Series Circuits	
Objective:	CO 3
To Plot the current locus diagrams for RL and RC circuits.	
TASK-4 Frequency response of series resonance circuit with analysis and design	
Objective:	CO 3
To determine resonant frequency, band width and Q-factor for series RLC circuits	
TASK-5 Frequency response of parallel resonance circuit with analysis and design.	

Objective:	CO 3
To determine resonant frequency, band width and Q-factor for parallel RLC circuits	
TASK-6 Verification of Thevenin's and Nortons theorems	
Objective:	CO 4
To verify the Thevinis and Nortons Theorem	
TASK-7 Verification of Reciprocity and Millman's Theorems	
Objective:	CO 4
To verify the reciprocity and Millman's Theorems	
TASK-8 Verification of Superposition Theorem	
Objective:	CO 4
To verify the superposition theorem	
TASK-9 Verification of Maximum Power Transfer Theorem	
Objective:	CO 4
To verify the Maximum power transfer theorem	
TASK-10 Verification of compensation Theorem	
Objective:	CO 4
To verify the compensation theorem	
TASK-11 Measurement of current in various branches of RLC series and parallel	
circuits. And draw the phasor diagram.	
Objective: To verify the series and parallel RLC circuits	CO 4
Task – 12 Measurement of Reactive Power for Star and Delta Connected Balanced	
Loads	
Objective:	CO 5
Measurement of reactive power of an 3- Φ balanced inductance load using one 1- Φ	
Wattmeter	

Additional Experiments:	
TASK-13 Measurement of 3-Phase Reactive Power by using one Wattmeter Method	
Objective:	CO 5
To measure the reactive power consumed by a 3 phase load using one wattmeter method	
TASK-14 Measurement of 3-Phase Power by Two Wattmeter Method for	
Unbalanced Loads	
Objective:	CO 5
To measure the reactive power consumed by a 3 phase load, using 2 wattmeter method.	
Virtual Labs:	
1. Parallel RC Circuits	
2. Parallel LC Circuits	
3. Thevenin's theorem	
4. Series RL Circuits	
5. Norton's Theorem	
6. Series LCR Circuit	

SN	Торіс	CO	Reference
0			
1	Thevinins and nortons	CO1	https://www.youtube.com/watch?v=7.JfoDFk61c 8
2	Series Resonance in RLC Circuit	CO2	https://www.youtube.com/watch?v=YLGrugmI vc0
3	Phasor Diagram of RL, RC and RLC Circuits	CO3	https://www.youtube.com/watch?v=HaFrY0qO- NU

1. A Chakrabarthy, "Electric Circuits", Dhanpat Rai & Sons, 6th Edition, 2010.

2. A Sudhakar, Shyammohan S Palli, "Circuits & Networks", Tata McGraw- Hill, 4th Edition, 2010

Reference Book(s):

1. Willam Hayt.jr, Jack E.kemmerly, Steven M.Durbin, "Engineering Circuit analysis" Tata McGraw- Hill, 8th Edition2012

2. Rudrapratap, "Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers", Oxford University Press, 1 st Edition, 1999.

Web References:

1. <u>https://www.ee.iitkgp.ac.in/</u>

2. <u>http://www.vlab.co.in/lab_ready_for_use.php</u>

3. http://vlab.amrita.edu/?sub=1&brch=75

		NARAYAN	A ENGIN	EERING CO	LLEGE:NE	LLORE		
20ES1504		Ε	NGINEE	RING GRAPI	HICS LAB			R2020
I-B.Tech		Hours / We	ek	Total	Credits	М	ax Marks	•
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
II-Semester	0	1	4	80	3	40	60	100
Pre-Requisit	e: Basic	Mathematics	(Geomet	ry)				
Course Ob	jectives:							
1. To im	part skill	s on using d	awing in	struments				
2. To cor	nvey exac	t and complex	ete inform	nation of any	physical ob	ject.		
3. To Co	nstruct E	Engineering	Curves.					
4. To Lea	arn and p	practice basic	AutoCA	D commands.				
5. To Inst	ruct the u	tility of drafti	ng & moo	leling packages	in orthograp	phic and isc	ometric	
drawin	gs							
6. To une	derstand t	he applicatio	ns of AU	UTOCAD for	modeling p	hysical ob	jects	
Course Outc	comes: At	t the end of th	e course,	student will be	able to:			
CO 1	Define	the qualities	of precisi	on and accur	acy in engi	neering dra	awing. (BL	L-1)
CO 2	Draw of	engineering o	curves wi	ith different n	nethods(BL-	3).		
CO 3	Develop	the orthogra	phic pro	jection of poi	nts and stra	ight lines(BL-3)	
CO 4	Constru	ct the planes	and simp	ple solids.(BL-	3).			
CO 5	Underst	and and pract	ice basic A	AUTOCAD con	nmands (BL	-2)		
CO 6	Constru	ct Isometric	views us	ing AUTOCA	D (BL-3).			

					CO-P	O Ma	apping	Ş						
СО						Р	0						PS	SO
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	Р	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	0	12	1	2
											11			
CO1	2				1							1	1	1
CO2	2	1			1							1	1	2
CO3	2	2			1							2	2	2
CO4	2	2			2	1						2	2	2
CO5	1	1	1		1							1	1	3
CO6	2	2	2		2							1	2	3
					1: Lov	v, 2-M	ledium	, 3- Hi	gh					

	COURSE CONTENT Part-A Manual Drawing	
TASK-1	Introduction and Conic sections	10 H
Introduction to Enginee	ring graphics:	l
Principles of Engineering sizes and title block, letter Geometrical constructions method only.	g Graphics and their significance; various instruments ring, BIS conventions, types of lines and dimensioning s: simple constructions, construction of Pentagon, Hexag	used, drawing sheet methods. gon by general
Conic Sections: . Types o	f conics: Ellipse, Parabola and Hyperbola (Eccentricity	method only),
At the end of the TASK - 1. Understand of C 2. Draw Conic Sect TASK -2	1, students will be able to: Geometrical Constructions. (BL-2) ions by using eccentricity method . (BL-3)	10 H
Objectives and Principle	a of projection	1011
Projections of points: Pr Projection of straight li and two reference planes: Pr Projections of planes: Pr perpendicular and incline At the end of the TASK- Understand Orth Draw Projection construct the Pro 	ojection of points placed in different quadrants, nes: Fundamental concepts, Line parallel, perpendicul placed in first quadrant only, rojection of planes (Triangle, Square, Pentagon, Circle) p d to one and two reference planes placed in first quadran 2, students will be able to: ographic Projection of points. (BL-2) of lines inclined to one and two reference planes. (jection of planes inclined to one and two reference	ar and inclined to one parallel, at only BL-3) planes.(BL-3)
TASK-3	Projections of Solids	12 H
Types of solids ; Polyh Projections of regu perpendicular to one plan plane. At the end of the TASK - 1. Understand Proje 2. Draw projections	hedra, Solids of revolution, lar solids (Prisms, Pyramids, Cylinders and e and parallel to other plane, Axis inclined to one plane 3, students will be able to: ections of regular Solids. (BL-2) s of Prisms, Pyramids, Cylinders And Cones(BL-3)	Cone), with its axis and parallel to other
TASK-4	Isometric and Orthographic views	10H
Isometric Projections : I lines, planes, simple soli views.	Principles, Isometric scale, Isometric views ,Convention ds (Cube, Cylinder, Cone), Conversion of Isometric v	ns, Isometric views of iews to Orthographic
At the end of the TASK - 1.Understand Principles of 2.Draw isometric views of 3.Apply the principles in	4, students will be able to: of Isometric Projections and Isometric scale (BL-2) of simple solids (BL-2) Conversion of Isometric views in to Orthographic vie	ws. (BL-3)
	Part B Computer Aided Drafting	
TASK–5	Introduction to AutoCAD	15 H

Basic drawing and editing commands: line, circle, rectangle, erase, view, undo, redo, snap, object editing, moving, copying, rotating, scaling, mirroring, layers, templates, polylines, trimming, extending, stretching, fillets, arrays, dimensions. Dimensioning principles and conventional representations.

At the end of the **TASK-** 5, students will be able to:

- 1. Understand the Basic AutoCAD commands. (BL-2)
- 2. Draw the templates of simple physical objects. (BL-3)
- 3. Apply the utility of drafting & modelling packages in orthographic and isometric drawings

IASIN-U	Orthographic and	Isometric Projections	18 H
Transforma	ation of Isometric Projections into o	rthographic projections such as	s simple solids such as
cylinder, co	ne, square prism, pentagonal pyramid		
Draw 3D mo	odel of mechanical components such a	s Stepped block, Bush bearing,	
At the end of	f the TASK -6, students will be able to):	
1. Dev	elop the usage of 2D and 3D modellin	g. (BL-3)	
2. Crea	ate the various views of machines com	ponents. (BL-3)	
			Total H: 75 H
C			
Content be	yond synabus: pent of surfaces. Section of solids		
	lent of surfaces, Section of solids		
Self-Studv:			
Contents to	promote self-Learning:		
0110		DC	
SNO	Горіс	Reference	
SNO		Reference	1.4.75 :
SNO 1	Introduction to Basic	https://mrcet.com/downloa	ds/hs/Engineering%20
SNO	Introduction to Basic Engineering Scales	https://mrcet.com/downloa Graphics %20Manual%20final.pdf	ds/hs/Engineering%20
SNO 1 2	I opic Introduction to Basic Engineering Scales Engineeringcurves	https://mrcet.com/downloa Graphics %20Manual%20final.pdf	ds/hs/Engineering%20
SNO 1 2 3	I opic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections	kelerence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1	ds/hs/Engineering%20 12104019/ 12104019/
SNO 1 2 3 4	Iopic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections Projections of Solids	keierence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1	ds/hs/Engineering%20 <u>12104019/</u> <u>12104019/</u> 05104148/
SNO 1 2 3 4 5	Iopic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections Projections of Solids AutoCAD	kererence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 https://www.autodesk.in/courses/1	ds/hs/Engineering%20 <u>12104019/</u> <u>12104019/</u> 05104148/ ampaigns/education/fus
SNO 1 2 3 4 5	Iopic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections Projections of Solids AutoCAD	kelerence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 https://www.autodesk.in/courses/1 on-	<u>ds/hs/Engineering%20</u> <u>12104019/</u> <u>12104019/</u> 05104148/ ampaigns/education/fus
SNO 1 2 3 4 5	Iopic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections Projections of Solids AutoCAD	kererence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 360?mktvar002=35108511	ds/hs/Engineering%20 <u>12104019/</u> <u>12104019/</u> 05104148/ ampaigns/education/fus SEM APAC GGL 002:
SNO 1 2 3 4 5	Iopic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections Projections of Solids AutoCAD	kererence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 wttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 www.nptel.ac.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://www.autodesk.in/courses/1 bttps://wwww.autodesk.in/courses/1 bttps:/	ds/hs/Engineering%20 <u>12104019/</u> <u>12104019/</u> 05104148/ ampaigns/education/fus SEM APAC_GGL_002:
SNO 1 2 3 4 5	Iopic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections Projections of Solids AutoCAD	kererence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 Babeline Ababeline EAIaIOobChMI25i62KuD	ds/hs/Engineering%20 <u>12104019/</u> <u>12104019/</u> <u>05104148/</u> ampaigns/education/fus SEM APAC_GGL_002: 06wIVi3wrCh1V1AUJE
SNO 1 2 3 4 5	Iopic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections Projections of Solids AutoCAD	keierence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 Attraction Attraction Attraction	ds/hs/Engineering%20 12104019/ 12104019/ 05104148/ ampaigns/education/fus SEM APAC_GGL_002: 06wIVj3wrCh1V1AUJE
SNO 1 2 3 4 5	Iopic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections Projections of Solids AutoCAD	keierence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 https://www.autodesk.in/courses/1 https://www.autodesk.in/courses/1 60?mktvar002=3510851 &gclid= EAIaIQobChMI25i62KuD AAYAS AAEgl.pmfD_BwE	ds/hs/Engineering%20 12104019/ 12104019/ 05104148/ ampaigns/education/fus SEM APAC_GGL_002: 06wIVj3wrCh1V1AUJE
SNO 1 2 3 4 5 6	Iopic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections Projections of Solids AutoCAD	keierence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 https://www.autodesk.in/cs on- 360?mktvar002=3510851 s &gclid= EAIaIQobChMI25i62KuD AAYAS AAEgLpmfD_BwE https://www.voutube.com/	ds/hs/Engineering%20 <u>12104019/</u> <u>12104019/</u> <u>05104148/</u> ampaigns/education/fus SEM APAC_GGL_002: 06wIVj3wrCh1V1AUJE
SNO 1 2 3 4 5 6	Iopic Introduction to Basic Engineering Scales Engineeringcurves Orthographic Projections Projections of Solids AutoCAD Isometric and Orthographic Projections	kererence https://mrcet.com/downloa Graphics %20Manual%20final.pdf www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 www.nptel.ac.in/courses/1 https://www.autodesk.in/cc on- 360?mktvar002=35108511 &gclid= EAIaIQobChMI25i62KuD AAYAS AAEgLpmfD_BwE https://www.youtube.com/	ds/hs/Engineering%20 12104019/ 12104019/ 05104148/ ampaigns/education/fus SEM APAC_GGL_002: 06wIVj3wrCh1V1AUJE /watch?v=iXgCzZFrYlg

- 1. Bhatt N.D. "Elementary Engineering Drawing", CharotarPublishers, 2014.
- 2. Shah and Rana, Engineering Drawing, 2/e, Pearson Education, 2009
- 3. K.L.Narayana&P.Kannaiah,EngineeringDrawing,3/e,ScitechPublishers,Chenna i, 2012.
- 4. Engineering Drawing by Dr AVS Sridhar Kumar, Dr Krishnaiah, T P Vara Prasad. ,Spectrum education, Sun techno Publications,2019

Reference Book(s):

- 1. Engineering Drawing and Graphic Technology -International Edition, Thomas E.French, Charles J. Vierck, Robert J. Foster, McGraw-Hill, 2014
- 2. Venugopal.K "Engineering Drawing and Graphics", New Age International (P) Ltd., New Delhi, 2010.

Online Resources:

- 1. www.nptel.ac.in/courses/112104019/
- 2. www.nptel.ac.in/courses/105104148/
- 3. <u>www.vlab.co.in</u>

Web Resources:

1. <u>https://mrcet.com/downloads/hs/Engineering%20Graphics%20Manual%20final.pdf</u> 2. http://cbseacademic.nic.in/web_material/CurriculumMain21/SrSecondary/Engineering_Graphics_Sr.Sec

2020- 21.pdf

3.http://cbseacademic.nic.in/web_material/Curriculum19/Main-/11_Engineering_Graphics.pdf

NARAYANA ENGINEERING COLLEGE:NELLORE											
20ES1510		Introdu	iction to F	Python Pro	ogrammin	g LAB		R2020			
I-B.Tech	Н	ours / Wee	ek	Total	Credit	Max Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
II-Semester	0	0	2	32	1	40	60	100			
Pre-requisite: Programming Knowledge											
Course Objectives:											
1. To gain knowledge on python programs basics											
2. To prepare students for solving the programs on functions, data structures, Files											
3. To pre	pare studer	nts for sol	ving the p	rograms o	n Classes,	Exception	Handiling	, Regular			
Expres	sions and M	Multi threa	ding	-		_	-	-			
Course Out	comes: Af	ter succes	sful compl	letion of the	ne course,	the stude	nt will be	able to:			
CO1	Understa	nding and	use of pyt	thon- Basic	c Concepts	(BL -2)					
CO2	Solve the	e concepts	of python	functions	and data s	structures(BL -3)				
CO3	Understa	nd the	concepts	of files,	modules	, multith	reading a	nd regular			
	expressio	ons (BL -2)								
CO4	Solve the	e concepts	of class ar	nd exception	on handling	g (BL -3)					

	CO-PO Mapping													
CO		РО												
	PO	PO P											PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	2										1	
CO2	2	3	2	2									2	1
CO3	2	2	3	2	2								3	2
CO4	2	2	2	1	1								3	2
					1-Low	, 2-M	edium	, 3- H	ligh					

COURSE CONTENT	CO						
Task-1 - Python Basics (4H)							
1. Running instructions in Interactive interpreter and a Python Script	CO 1						
2. Write a program to purposefully raise Indentation Error and Correct it							
3. Write a program to compute distance between two points taking input from the user (Pythagorean Theorem)							
4. Write a program to convert a Binary number to Decimal number and verify if it is a							
Perfect number.							
Task-2 - Conditional Statements (2 H)							
1. Write a program to determine if a given string is a Palindrome or not	CO 1						
2. Write a program for Fibonacci sequence is generated by adding the previous two							
terms by starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55,							
89,							
Task-3 - Functions (2 H)							
1. Write a function ball_collide that takes two balls as parameters and computes if	CO 2						
they are colliding. Your function should return a Boolean representing whether or not							
the balls are colliding.							
Hint: Represent a ball on a plane as a tuple of (x, y, r), r being the radius. If (distance							

between two balls centers) <= (sum of their radii) then (they are colliding)	
TASK-4 - Eunctions Continued (2 H)	
1. Write a function that draws a Duramid with # symbols	CO 2
1. White a function that draws a Fyrainid with # symbols	
#	
" # # #	
# # # #	
# # # # # #	
2. Choose any five built-in string functions of C language. Implement them on your	
own in Python. You should not use string related Python built-in functions.	
TASK-5 - Strings(4 H)	
1. Write a program to use split and join methods in the string and trace a birthday	CO 2
with	
Diction b array data structure.	
2. Write a program using map, filter and reduce functions	
TASK-6 - Lists (4 H)	
1. Write program which performs the following operations on list's. Don't use built-	CO 2
in	
functions	
a) Updating elements of a list	
b) Concatenation of list's	
c) Check for member in the list	
a) filsert filto the list	
e) Sum the elements of the list	
a) Sorting of list	
b) Finding biggest and smallest elements in the list	
i) Finding common elements in the list	
TASK 7 Files (2 H)	
IASK-7 - Files (2 H)	
1. Write a program to print each line of a file and count the number of characters,	0 3
Words and lines in a file.	
2. Write a program that allows you to replace words, insert words and delete words	
TASK-8 - Modules and Packages (2 H)	
1. Write a program for creating a module and import a module	CO 3
2. Write a program to perform any two operations using Numpy	
TASK-9-Class and Objects (4 H)	
1. Write a program for Class variables and instance variable and illustration of the self variable	CO 4
i) Robot	
ii) ATM Machine	
TASK-10 - Exception Handiling (2 H)	
1. Write a program of exception handling to open a file while do not have write permissions	CO 4

2. Write a Programto handle multiple errors with one except statement.	
TASK-11- Regular Expressions(2 H)	
1. Write a Python program to remove the parenthesis area in a string.	CO 3
Sample data : ["example (.com)", "w3resource", "github (.com)", "stackoverflow (.com)"]	
2. Write a program to match the name phone, emails, passwords and phone numbers using pattern matching	
TASK-12-Turtle (2 H)	
 Write a turtle program to construct a clock dial Write a turtle program to produce a flower in different colours 	CO 3

Additional Experiments:							
TASK-1							
1. Write a python program to find the resolution of an image							
2. Write a python program to count the number of vowels and consonants							
3. Write a python program to print the ASCII value of acharacter							

/irtual Labs:										
Python Lab (IIT Bombay) : <u>http://vlabs.iitb.ac.in/vlabs-dev/labs/python-</u>										
basics/experimentlist.html										
List of Experiments										
1. Arithmetic Operations	6. Classes and Objects									
2. Built-in Functions	7. Built-in Modules									
3. Loops	8. Constructors and Inheritance									
4. Data Types	9. File Operators									
5. Strings										

- 1. VamsiKurama, Python Programming: A Modern Approach, Pearson, 2017.
- 2. Allen Downey, Think Python, 2ndEdition, Green Tea Press

Reference Books :

- 1. R. Nageswara Rao, "Core Python Programming", 2nd edition, Dreamtech Press, 2019.
- Allen B. Downey, "Think Python", 2ndEdition, SPD/O'Reilly, 2016.
 Martin C.Brown, "The Complete Reference: Python", McGraw-Hill, 2018.
- 4. Mark Lutz, Learning Python, 5th Edition, Orielly, 2013.
- 5. Wesley J Chun, Core Python Programming, 2nd Edition, Pearson, 2007
- 6. Kenneth A. Lambert, Fundamentals of Python, 1st Edition, Cengage Learning, 2015

Web References:

- 1. https://www.tutorialspoint.com/python/index.htm
- 2. https://www.w3schools.com/python/
- 3. https://www.javatpoint.com/python-tutorial
- 4. https://www.geeksforgeeks.org/python-programming-language/

	NARA	YANA I	ENGIN	EERING	G COLLI	EGE:NE	LLORE	
20EN1502		ORA	L COMM	UNICATI	ON SKILL	S LAB		R2020
I-B.Tech	H	Iours / Wee	k	Total brs	Credit		Max Marl	KS
	L	Т	Р	111.5	С	CIE	SEE	TOTAL
II-Semester	0	0	2	32	1	40	60	100
Pre-requis	ite:Nil							
Course Ob	jectives:							
1. Une awa 2. Une and 3. Imp 4. Une 5. To exp 6. To Course Ou	derstand the areness of a derstand an l can handle proves spea derstand the improve the ress them e equip stude tcomes : Af	e role of con appropriate of d learn to de e a concern king ability e essential p e mass com effectively ents with kn ter successf op knowledg	nmunicati communic istinguish or compla in English points in pr municatio owledge a ful comple ge, skills, a collaborati	on in perso ationstrates informal sp int, with er both in ter reparing an n and provi nd techniqu tion of the and judgme ively with o	nal & profes gies. weech from for npathy andu ms of fluend oralpresenta de an opport les to effecti course, the s nt around hu thers.	ssional succ ormal speed nderstandir cy andcomp ation tunity to ex- vely tackle tudent will	ess and deve ch through rong. orehensibility ercise their rong the interview be able to:	elop ole plays y. rights to wprocess nat facilitates
CO 2	CO 2 Use listening skills to create more effective, less confrontational, more proc professional & personal relationships and understand techniques required for ex- telephone etiquette.							
CO 3	Develop	their public	speaking a	abilities to s	speak both f	ormally and	l informally.	
CO 4	Learn the	skills neces	ssary to de	liver effect	ive presenta	tion with cl	arity and im	pact.
CO 5	Understand in group a	nd the nuane activities.	ces of Eng	lish langua	ge and skills	required fo	or effective p	participation
CO 6	Learn to f & prepara	face differer ation require	nt types of ed for atte	interviews nding an in	with confid	ence and ur	nderstand the	e procedure

	CO-PO Mapping													
		РО												
СО	РО	РО	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1									3		2		
CO2	1									2		3		
CO3	1									3		2		
CO4	1									3		3		
CO5	1									3		2		
CO6	1									2		3		
					1: Lo	w, 2-N	ledium	, 3- Hi	igh					

COURSE CONTENT	СО							
Module - 1								
Ice - Breaking Activity – Introducing Oneself and Others – Greetings – Taking Leave -	CO1							
Introduction to Communication Skills – Verbal & Non Verbal Communication - Barriers to								
effective communication - Kinesics - Proxemics - Chronemics - Haptics- Paralanguage.								
Module - 2								
Situational Dialogues and Role play – Expressions in various Situations - Greetings – Apologies –	CO2							
Requests – Giving directions -Social and Professional etiquettes – TelephoneEtiquettes								
Module - 3								
Just a Minute (JAM) - Asking for Information and Giving Directions–Description (Oral):	CO3							
Pictures, Photographs, Products, and Process								
Module – 4								
Presentation Skills - Oral presentations (individual and group) through Seminars / PPTs - Fluency	CO4							
& accuracy in speech - Improving self- expression- Tonal variations - Listener oriented								
speaking - Developing persuasive speakingskills.								
Module - 5								
Debate : concepts, types, do's and don'ts - intensive practice- Group Discussion and Group	CO5							
Discussion : Dynamics of group discussion, intervention, summarizing, modulation of								
voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation.								
Module - 6								
Interview Skills: Concept and process, pre-interview planning, opening strategies, answering	CO6							
strategies, interview through Tele - Conference & video - conference and Mock Interviews.								

Reference Book(s):

- Rizvi, Ashraf. M., Effective Technical Communication, McGraw Hill, New Delhi. 2005
- Raman, Meenakshi &Sangeetha Sharma. Technical Communication: Principles and Practice, Oxford University Press, New Delhi.2011.
- Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT; 2nd Edition, 2018.
- English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata McGraw-Hill2009
- CommunicationSkillsbyLeenaSen,PHILearningPvtLtd.,NewDelhi,2009

Web Resources:

- *Grammar/Listening/Writing1-language.com*
- <u>http://www.5minuteenglish.com/</u>
- <u>https://www.englishpractice.com/Grammar/Vocabulary</u>
- English Language LearningOnline
- <u>http://www.bbc.co.uk/learningenglish/</u>
- <u>http://www.better-english.com/</u>
- <u>http://www.nonstopenglish.com/</u>
- <u>https://www.vocabulary.com/</u>
- BBC Vocabulary Games
- Free Rice Vocabulary Game<u>Reading</u>
- <u>https://www.usingenglish.com/comprehension/</u>
- <u>https://www.englishclub.com/reading/short-stories.htm</u>
- <u>https://www.english-online.at/ Listening</u>
- <u>https://learningenglish.voanews.com/z/3613</u>
- http://www.englishmedialab.com/listening.htmlSpeaking
- <u>https://www.talkenglish.com/</u>
- BBC Learning English Pronunciationtips
- Merriam-Webster Perfect pronunciation Exercises <u>AllSkills</u>
- <u>https://www.englishclub.com/</u>
- <u>http://www.world-english.org/</u>
- <u>http://learnenglish.britishcouncil.org/</u>

Online Dictionaries

- *Cambridge dictionary online :<u>https://dictionary.cambridge.org/</u>*
- *MacMillan dictionary :<u>https://www.macmillandictionary.com/</u>*
- Oxford learner's dictionaries : <u>https://www.oxfordlearnersdictionaries.com/</u>

Department of E.E.E :: 2020-2021

NECR B.Tech 20 <u>SEMESTER III</u>

Subject	Category	Course Title	Соі	ntact v	Perio veek	ods per	Credits	Scheme of Examination Max. Marks			
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks	
20MA1006	BS	Probability Statistics and Numerical Methods	3	0	0	3	3	40	60	100	
20ES1011	ES	Data Structures	2	0	2	4	3	40	60	100	
20ES1013	ES	Electronic Devices and Circuits	3	0	0	3	3	40	60	100	
20EE2001	PC	Electrical Circuit Analysis		0	0	3	3	40	60	100	
20EE2002	PC	DC Machines and Transformers		0	0	3	3	40	60	100	
20ES1516	ES	Electronic Devices and Circuits Lab		0	3	3	1.5	40	60	100	
20EE2501	PC	DC Machines and Transformers Lab	0	0	3	3	1.5	40	60	100	
20EE2502	PC	Electrical Circuits and Simulation Lab	0	0	3	3	1.5	40	60	100	
20CD6001	SC	Career competency Development I	0	0	2	2	1	40	60	100	
20CC6001	SC	Value added course/Certificate course I	0	1	0	1	1	40	60	100	
20MC8002 -12	MC	Mandatory course II	2	0	0	2	0				
		Counseling/Mentoring	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme		Du	ring t	he Seme	ster	20 Points			
		Total	16	1	16	33	21.5	400	600	1000	

NARAYANA ENGINEERING COLLEGE: NELLORE														
20MA1006	P	ROB	ABILI	TY, S'	FATIS '	TICS	AND	NUM	ERIC	AL MI	ЕТНО	DS	R	2020
II-B.Tech		He	ours / V	Week		Т	otal	Cree	dit		N	/lax Ma	arks	
	I		Т		Р	ł	ırs	C		CIE		SEE	TC	DTAL
I-Semeste	er E	3	0		0	4	48	3		40		60	1	100
Pre-requ	i site : i	inter n	nathem	natics										
Course (Objectiv	es:												
1. T	o study	diffe	erent c	coordii	nate sy	stem	s, Phy	sical	signi	ficance	of D	oiverge	nce, C	url and
G	radient.													
2. To acquire knowledge on electric and magnetic fields in both static and dynamic domains.														
3. T	o under	stand	wave o	concep	t with	the he	elp of	Maxw	ell's e	equation	ns.			
4. T	o Analy	ze ref	lection	and re	efraction	n of E	EM wa	ves an	d Eleo	etromag	gnetic	wave	propaga	tion in
different media.														
5. T	o introd	luce co	oncepts	s of po	larizati	ion ar	nd fund	lamen	tal the	eory of	electro	omagn	etic wa	ves
ir	in transmission lines and their practical applications.													
Course Outcomes: After successful completion of the course, the student will able to:														
CO 1 Use the concept of discrete and continuous probability distributions in life testing, expected														
	failures for various engineering applications. (L-3)													
CO 2	CO 2Test the Large samples data by applying inferential techniques.(L-4)													
CO 3	Test th	e smal	l samp	les dat	a by ap	plying	g infer	ential t	echni	ques.			((L-4)
CO 4	Apply	the kn	owledg	ge how	to solv	e alge	ebraic	and tra	nscen	dental e	equation	ons usii	ng nume	erical
	method	ls and	interpo	olating	the pol	ynom	ials.						((L-3)
CO 5	Utilize	the n	umeric	al diff	erentia	tion a	and int	egratio	on tec	hnique	s to sc	olve en	gineerii	ng
	proble	ms.						C		•			((L-3)
CO 6	Solve i	nitial	value p	roblen	ns of or	dinary	y diffe	rential	equat	ions by	using	numer	ical tec	hniques.
	(L-3)		-			-			-	-	-			-
					С	O-PC) Mai	oping						
						PO)	<u> </u>					Р	SO
CO	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
		2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3		2										
CO2	3	3	2	2										
CO3	3	3		2										
CO4	3	3	2	2										
CO5	3	3		2										
CO6	3	2		2										
					1-1	Low, 2-	Medium	, 3- High						

COURSE CONTENT

MODULE – 1	Prob	ability Distributions			Hours:10	
Introduction of R	andom variables, I	Probability mass function	and Pro	bability den	sity function	concepts.
Introduction to Bi	nomial distribution	n (B.D), Mean, variances(v	without	derivations),	properties, ap	oplication
Problems on B.D.	, fitting of Binomi	al distribution, Poisson di	istributio	on (P.D), Me	ean, variances	(without
derivations), prop	erties, some appli	cation Problems on P.D,	Normal	distribution	(N.D) and p	roperties,
Mean, variances,	mode (without	derivations derivation),	some	application	Problems or	1 normal
distribution, Expo	nential distribution	n, its properties and application	ations			

At the end of the Module 1, students will be able to:

- 1. Apply the mathematical expectation techniques to find the expected value and variance. (L-3)
- 2. Acquire the knowledge about classification of the variables (characteristics), through. (L-3)
- 3. Apply an appropriate probability distribution to analysis the data. (L-3)
- 4. find expected mean life time of the product by using normal distribution. (L-1)

MODULE -2	Large Sample Tests	Hours:8
Population, sample,	statistic, Introduction to Sampling distribution a	and standard error .Introduction to
Hypothesis, critical r	egion, type-I, type-II errors, level of the significant	nce, one-tailed and two-tailed tests,
test procedure, one	sample mean-test, confidence intervals for or	ne sample mean, two-mean test,
confidence intervals	for two sample mean, one-sample proportion	test, confidence intervals for one
At the end of the Mo	dule 2, students will be able to:	
1. Apply the te	sting of hypothesis techniques, decide the product	is good or bad. (L-3)
2. How much o	f sample size is required for testing	(L-1)
3. Determine the	he control limits of the product.	(L-3)
4. Select appro	priate test statistic to analysis the data.	(L-3)
MODULE-3	Small Sample Tests	Hours:8
One sample mean-tes	st, confidence intervals for one sample mean, two	-mean test, confidence intervals for
two sample mean, p	paired t-test, some application problems on t-test	, Chi-square tests are one sample
variance test, goodne	ess of fit and test for independence of attributes. S	some application problems on Chi-
square –test. F-tests a	and some application problems on F-test	
At the end of the Mo	dule 3, students will be able to:	
4. Determine th	e product came from same company or not.	(L-3)
5. Applying t-te	est techniques, to determine the experimentation u	setul or not (L-3)
6. Use the chi-s	equare test techniques to select the appropriate dist	ribution (L-3)
7. Apprying the	e chi-square test to test whether the attributes are in	Idependent of not (L-3)
MODULE-4	Solution of Algebraic, Transcendental	Hours:8
	Equations & Interpolation	
Method - explanation Method- Explanation differences, Newton Backward Difference without proof, proble	n, problem, The Method of False Position- Expla n, problem. Interpolation: Introduction, Finite c 's Forward Difference interpolation- Formula w e interpolation- Formula without proof, problems, ems	ination, problem, Newton-Raphson lifferences, Forward & Backward rithout proof, problems, Newton's Lagrange's Interpolation- Formula
At the end of the Mo	dule 4, students will be able to:	
1. Solve an alge	ebraic or transcendental equation using an appropr	iate numerical method. (L-3)
2. Understand t	he use of different operators in interpolation.	(L-2)
3. Estimate the	value for the given data through interpolation po	$\begin{array}{llllllllllllllllllllllllllllllllllll$
5. Proficient in	implementing numerical methods for a variety of	multidisciplinary (L-2)
applic	-2)	
MODULE-5	-2)	Hours:6
Wave Equations for	Conducting and Perfect Dielectric Media Unifo	rm Plane Wayes - Definition All
Relations between I Conductors & Dielec Perfect Dielectrics, S Perfect Conductor a Parallel and Perpend Reflection, Surface I Plane Conductor, Illu	E & H, Sinusoidal variations, Wave Propagati etrics- Characterization, Wave Propagation in Goo Skin effect, Polarization-Linear, Elliptical & Cir nd Dielectrics, Oblique Incidences for both Per icular polarizations, Brewster Angle/Polarizing A mpedance, Poynting Vector, and Poynting Theore istrative Problems. Illustrative Problems.	ion in lossless and lossy Media, od Conductors, good Dielectric and rcular, Normal incidence for both fect Conductor and Dielectrics in ngle, Critical Angle, Total Internal em – Applications, Power Loss in a

At the end of the Module 5, students will be able to:

- 1. Understand the concept of numerical differentiation and integration.
- Solve integral equations using Trapezoidal rule, Simpson's 1/3 Rule, Simpson's 3/8 Rule. 2.

(L-3)

Apply numerical differentiation and integration techniques to various engineering problems. 3.

(L-3)

Content beyond syllabus:

Understand the techniques of Trapezoidal rule, Simpson's 1/3 Rule, Simpson's 3/8 Rule and its 4.

annlication	1	(1.2)
MODULE-6	Numerical Differentiation & Integration	Hours:8
Numerical Differen	ntiation: Introduction, Numerical Differentiation for	ormula using Newton's forward &
backward Difference	es (without proof), problems. Numerical Integrati	on: Introduction, Trapezoidal rule-
formula (without p	coof), problems, Simpson's 1/3 Rule- Formula (w	ithout proof), problems, Simpson's
3/8 Rule- Formula (without proof), problems.	
At the end of the M	odule 6, students will be able to:	
1. Understan	d the different methods of numerical solution of	ordinary differential equations.
		(L-2)
2. Acquire the	knowledge how to solve ordinary differential equa	tions through the numerical

- method. (L-3) (L-3)
- Apply Runge-kutta method in engineering problems 3.
- Workout numerically on the ordinary differential equations using Taylor's series methods. (L-1) 4.

Total hours

48

(L-2)

	 Analysis variance. lognormal distribution. regression analysis . 		
Self-Stu	ıdy:		
Content	s to promote self-Learning:		
SNO	Торіс	CO	Reference
1	Probability distribution	CO1	https://www.youtube.com/watch?v=6x1pL9Yov1k
2	Large sample tests	CO2	https://www.youtube.com/watch?v=80YzzIm8NK8
3	Small sample tests	CO3	https://www.youtube.com/watch?v=c5YTyGWpcm w
4	Solution of Algebraic and Transcendental Equations	CO4	https://www.youtube.com/watch?v=apuEXUAntJo
5	Numerical Differentiation & Integration	CO5	https://www.youtube.com/watch?v=0rtaUUonwkU
6	Numerical solution of Ordinary differential equations	CO6	https://www.youtube.com/watch?v=QugqSa3Gl-w

Text Book(s):

- 1. Iyengar T.K.V., Krishna Gandhi B. & Others., (2013), Numerical Methods, Second Revised Edition, New Delhi, S.Chand & Co.Ltd.
- Miller and Freunds, Probability and Statistics for Engineers, 9/e, Pearson, 2017. 2.
- S.S. SASTRY, Introductory Methods of Numerical Analysis, 5/e, PHI learning private limited, 3. 2011.

4. B S Grewal, (2017), Higher Engineering Mathematics, 44th Edition, New Delhi, Khanna Publishers.

erence Book(s):

- 1. S. Ross, a First Course in Probability, Pearson Education India, 2002.
- 2. Fundamentals of Mathematical Statistics" is written by SC Gupta and VK Kapoor and ... Aug 19, 2016.
- 3. W. Feller, an Introduction to Probability Theory and its Applications, 1/e, Wiley, 1968.
- 4. G S S Bhishma Rao (2011), Probability and Statistics, Fifth Edition, Hyderabad, SciTech Publications Pvt.Ltd.

Online Resources/ Web References:

- 1. <u>https://www.vfu.bg/en/e-Learning/Math_Soong_Fundamentals_of_probabilityand statistics for</u> <u>engineers.pdf</u>
- 2. <u>http://www.math.ust.hk/~machas/numerical-methods.pdf</u>
- 3. https://www.khanacademy.org/math/statistics-probability
- 4. <u>http://www.randomservices.org/random/dist/index.htm</u> 1
- 5. <u>https://global.oup.com/uk/orc/biosciences/maths/reed/01student/numerical_tutorials/pdf</u>

NARAYANA ENGINEERING COLLEGE:NELLORE									
20ES1011		DATA STRUCTURES R2020							
II-B.Tech	ŀ	Iours / We	ek	Total	Credit		Max Marks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
I-Semester	2	0	2	62	3	40	60	100	
Pre-requis	Pre-requisite: Knowledge of Mathematics, Computer Programming, Analytical &								
Logical Skills									
Course Objectives:									
1. To explain efficient storage mechanisms of data for an easy access.									
2. To dest	ign and in	plementa	tion of var	ious basic	and advan	ced data s	tructures.		
3. To intr	oduce var	ious techn	iques for r	representat	tion of the	data in the	e real work	d.	
4. To dev	elop appli	cations us	ing data st	ructures.					
5. To per	tain know	ledge on i	mproving	the efficie	ncy of algo	orithm by	using suita	ıble	
data struc	cture.								
Course Ou	tcomes:	After succ	essful con	mpletion	of the cour	rse, the stu	udent will	be able to:	
CO 1	Understa	and basic	concepts	of data str	uctures ar	nd algorith	ım analysi	is. (BL - 2)	
CO 2	Develop	the applic	ations usir	ng stacks a	and queues	. (BL - 3)			
CO 3	Demons	trate the u	se of link	ed lists. (BL - 2)				
CO 4	Apply tre	ee, graph o	lata struct	ures for va	rious appl	ications. (I	BL - 3)		
CO 5	Impleme	nt algorith	ims for som	rting, sear	ching, and	hashing m	ethods. (E	BL - 3)	

CO-PO Mapping														
						Р	0						PS	50
СО	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO 1	1	1	2										1	
CO 2	2	3	2	2									2	1
CO 3	2	2	3	2	2								3	2
CO 4	2	2	2	1	1							2	3	2
CO 5	2	1	2	1								1	2	2
					l: Lov	v, 2-M	lediun	n, 3- H	ligh					

COURSE CONTENT

MODULE 1	Later lasting to Date Store stores	1011
MODULE – I	Introduction to Data Structures	IOH
Introduction: Ov	verview of Data Structures, Implementation of Data Structure	res, Algorithm
Specifications, An	alysis of an Algorithm, Asymptotic Notations, Time-Space tra	de off.
Arrays: One-Dim	ensional, Multi-Dimensional, Pointer Arrays.	
At the end of the	Module 1, students will be able to:	
1. Understa	and the linear and non-linear data structures. (BL - 2)	
2. Understa	nd the time and space complexities of an algorithm. (H	3L - 2)
3. Illustrate	representation of data using Arrays. (BL - 2)	
MODULE -2	Stacks and Queues	9H
Stacks: Introducti	on, Representation of a Stack, Stack Operations, Applications	of Stacks.

Queues: Introduction, Representation of a Queue, Queue Operations, Circular Queue, Applications of Queues.

At the end of the Module 2, students will be able to: 1. Explain stack ADT and its operations. (BL - 2) 2. Understand the expression evaluation using stacks. (BL - 2) 3. Implement various queue structures. (BL - 3) **MODULE-3 Linked Lists 9H** Introduction, Singly linked lists, Doubly Linked Lists, Circular Linked Lists, Linked Stacks and Queues, Applications of Linked Lists. At the end of the Module 3, students will be able to: 1. Understand basics concepts of linked lists. (BL - 2) 2. Illustrate various structures of linked lists. (BL - 2) 3. Understand the concept of dynamic memory management. (BL - 2) **MODULE-4 10H Trees & Graphs** Trees-Introduction, Basic Terminologies, Definition and concepts, Representation of Binary Binary Tree. operations on a BinaryTree, SearchTree, Height BalancedBinaryTree.Graph Terminologies, Representation of Graphs, Graph Operations, Shortest Paths – Warshall's, Floyd's and Dijkstra's algorithms, Topological Sorting. At the end of the Module 4, students will be able to: 1. Understand the concept of trees. (BL - 2) 2. Compare different tree structures. (BL - 2) 3. Explain the importance of Graphs for solving problems. (BL - 2) 4. Understand graph traversal methods. (BL - 2) 5. Implement algorithms to identify shortest path. (BL - 3) **MODULE-5 10H** Sorting, Searching and Hash Tables Sorting: Introduction, Bubble Sort, Selection Sort, Quick Sort.Searching: Introduction, Basic Terminology, Linear Search and Binary Search Techniques. Hash Table: Hashing Techniques, Collision Resolution Techniques, Closed Hashing, Open Hashing. At the end of the Module 6, students will be able to: 1. Implement the sorting algorithms (BL - 3) 2. Select the appropriate sorting algorithm for a given application (BL - 3) 3. Understand the concept of Hash Table (BL - 2) 4. Explain searching techniques. (BL - 2) Total hours: 48 hours

Content beyond syllabus:

- 1. Heap Sort, Insertion Sort, Merge Sort
- 2. Optimum Sorting Algorithms

Text Book(s):

- D. Samanta, "Classic Data Structures", 2nd Edition, Prentice-Hall of India, Pvt. Ltd., India, 2012.
- 2. Ellis Horowitz and Sartaj Sahni, "Fundamentals of Data Structures in C", 2nd Edition, Universities Press, 2008.

Reference Books:

- 1. NarasimhaKarumanchi, Data Structures and Algorithms Made Easy, Careermonk Publications, 2016
- 2. Peter Bras, "Advanced Data Structures", Cambridge University Press, 2014.
- 3. RS Salaria, Data Structures, 3rd Edition, Khanna Publishing House, 2017.
- 4. YashwantKanetkar, Data Structures through C,3rd Edition, BPB Publications, 2019.
- 5. RB Patel, Expert Data Structures with C, Khanna Publications, 2019.
- 6. Richard F. Gilberg, Behrouz A. Forouzan, Data Structures A Pseudo code Approach with C, Second Edition, Cengage Learning.
- 7. Ananda Rao Akepogu, Radhika Raju Palagiri, Data Structures and Alg. Using C++,

		NA	RAYA	NA E	ENGIN	IEER	ING	COLI	LEG	E:NEL	LOR	E		
20ES1013			EL	ECTR	ONIC	DE V	/ICES	AND	O CIR	CUITS			R20	
II-B.Tech		Н	ours /	Week		T	otal	Cred	it		Μ	lax Ma	ırks	
		L	Т		Р	ł	nrs	C		CIE		SEE	TO	TAL
I-Semester	:	3 0 0					48	3		40		60	1	00
Pre-requi	isite: Semiconductor Physics.													
Course Objectives:														
1.	To s	tudy t	he ope	eration	and c	harac	teristi	cs of F	PN ju	nction of	diode	and sp	pecial	
	semi	condu	ictor d	levices	5									
2.	To fa	amilia	rize th	ne desi	gn and	l anal	ysis o	f recti	fiers	with fil	ters.			
3.	To d	lescrib	be the	charac	teristic	cs of]	BJT a	nd its	confi	guratio	ns.			
4.	To a	nalyze	e the b	iasing	circui	ts of	BJT.							
5.	To s	tudy t	he cha	racter	istics o	of MC	SFE	Γ.						
Course O	utcor	nes: A	After s	ucces	sful c	ompl	etion	of the	cou	rse, the	stude	ent wi	ll be ab	ole to:
CO 1	Illust	trate t	he V-I	charac	teristic	s of P	-N jun	ction I	Diode	and spe	cial se	emicon	ductor	
	devid	ces. (B	L-2)											
CO 2	Dem	onstra	te the p	perform	nance o	of rect	ifiers v	with an	d wit	hout filt	ers. (E	BL-2)		
CO 3	Com	pare tl	he oper	ating o	characte	eristic	s of BJ	IT (BL	-3)					
CO 4	Anal	yze th	e BJT	biasing	g techni	ques.	(BL-4)						
CO 5	Inter	pret th	e chara	acterist	tics of I	MOSF	FET. (H	3L-2)						
	1				С	O-PC) Map	ping						
CO			-	-		P	0						PS	50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO
~~~	1	2	3	4	5	6	7	8	9	10	11	12	1	2
COl	3	1											3	
<u>CO2</u>	3	2	3										3	
<u>CO3</u>	3	2	2										3	
C04 C05	3	5	2										2	2
	3	1	1		1. I. c.		[adium	2 11	lah				3	3

1: Low, 2-Medium, 3- High

	COURSE CONTENT	
MODULE – 1	SEMICONDUCTOR DIODE&SPECIAL SEMICONDUCTOR DEVICES	10 Hrs
Semiconductor Di	ode: Principle and Structure of PN junction diode. Open circuited PN	I junction diode

**Semiconductor Diode:** Principle and Structure of PN junction diode, Open circuited PN junction diode, Energy band diagram of PN diode, Diode current Equation, Volt-Ampere Characteristics, Temperature dependence of Volt-Ampere Characteristics, Diode capacitance.

**Special Semiconductor Devices:** Principle of operation and Characteristics of Varactor diode, Tunnel Diode, Photo diode, LED, SCR

At the end of the Module 1, student will be able to:

1.Define PN junction diode (BL-1)

2. Explain the operation of PN junction diode for both forward and reverse bias. (BL-2)

3.Explain the energy band diagram of PN junction diode (BL-2)

4. Interpret the effect of temperature on V-I characteristics of PN junction diode (BL-2)

- 5. Derive the expression for transition and diffusion capacitance (BL-2)
- 6. Explain V-I Characteristics of various special diodes. (BL-2)
- 7. Describe the principle of operation of thyristors. (BL-2)

MODULE -2	<b>RECTIFIERS &amp; FILTERS</b>	10 Hrs
Diode applications	s: P-N junction diode as a rectifier - Half Wave Rectifier, Full Wave	Rectifier, Bridge
Rectifier, rectifier	parameters, Harmonic components in Rectifier Circuits. Clippers	and Clampers
(Qualitative Treat	ment only)	
Filters: Inductor Fi	lters, Capacitor Filters, L- section Filters, $\pi$ - section Filters, bleeder resist	or.
At the end of the M	odule 2, students will be able to:	
1. Explain the	operation of a bridge rectifier. (BL-2)	
2. Analyze the	performance of rectifiers with and without filters. (BL-4)	
3. Design half	f wave and full wave rectifier circuits. (BL-4)	
4. Differentiat	te various rectifier circuits in terms of their parameter metrics.(BL-2)	
5. Explain the	e importance of bleeder resistor (BL-2)	
MODULE-3	<b>BIPOLAR JUNCTION TRANSISTOR</b>	9 Hrs
Bipolar junction <b>T</b>	Transistor : Construction, Principle of Operation, transistor current comp	onents, transistor
configurations, Tra	nsistor h-parameter model, calculation of h-parameters from characterist	ics, transistor as a
switch, transistor as	s an amplifier.	
At the end of the M	odule 3, students will be able to:	
1. Discuss the	e current components and their relationships in BJT (BL-2)	
2. Explain pri	nciple, operation and applications of BJT (BL-2)	
3. Describe in	put and output Characteristics of BJT (BL-2)	
4. Differentiat	te BJT configurations (CB,CC,CE) (BL-2)	
MODULE-4	TRANSISTOR BIASING	10 Hrs
Transistor Biasi	ng: Need for biasing, operating point, load line analysis, Stab	ilization against
variations in I _{CO} ,	$V_{BE}$ and $\beta$ , biasing and stabilization techniques: fixed bias, collect	tor to base bias,
voltage divider bia At the end of the M	as, bias compensation techniques, thermal runaway, heat sink and t odule 4, students will be able to:	hermal stability.
1. Explain pri	nciple, operation and applications of MOSFET (BL-2)	
2. Describe th	e operation and characteristics of Depletion MOSFET. (BL-2)	
3. Explain the	operation and characteristics of Enhancement MOSFET. (BL-2)	
4. Differentiat	te enhancement and depletion mode MOSFET. (BL-2)	
MODULE-5	METAL OXIDE SEMICONDUCTOR FIELD-EFFECT TRANSISTOR	9 Hrs
MOSEET. Care	IRANSISTOR	d DMOS Dusin
WIOSFEI: Consi	Index and enhancement mode of NMOS an	d PMOS, Drain
characteristics of	MOSFET, Transfer Characteristics of MOSFET, MOSFET as a	Switch, CMOS
Inverter and it's C	haracteristics.	
At the end of the M	odule 5, students will be able to:	
2 Explain the it	g and stabilization (BL-1)	
2.Explain the in	stabilization techniques (PL 4)	
J. Analyze the	(BL - 4)	
4. Differential	e compensation techniques. (DL-2)	1
	Total hours:	48 Hours

# Content beyond syllabus:

1. Multi vibrators-Mono stable, Bi stable & Astable multi vibrators,

2. signal conditioning circuits-input signal determination, amplification, filtering.

## Self-Study:

Contents to promote self-Learning:

<b>SNO</b>	Module	Reference
1	Semiconductor	https://www.electronics-tutorials.ws/diode/diode 3.html

	diode & Special	
	semiconductor	https://www.electrical4u.com/tunnel-diode
	devices	
2	Rectifiers and	https://www.electricaltechnology.org/2019/01/what-is-
	filters.	rectifier-types-of-rectifiers-their-operation.html
3	Bipolar junction	https://www.electronics-tutorials.ws/transistor/tran 2.html
	Transistor	
4	Transistor Biasing	https://www.tutorialspoint.com/amplifiers/methods_of_tran
		sistor_biasing.htm
5	Field effect	https://www.electronics-tutorials.ws/transistor/tran_5.html.
	transistors	

1. 1. J. Milliman and C Halkias, "Integrated electronics", 2nd Edition, Tata McGraw Hill, 1991.

- 2. L. Boylestad and Louis Nashelsky (2006), Electronic Devices and Circuits, 9th Edition, Pearson/Prentice Hall
- 3. Electronic Devices and Circuits by Lal Kishore, BS Publications.

#### **Reference Book(s):**

- 1. Behzad Razavi, "Microelectronics", Second edition, Wiley, 2013.
- 2. S. Salivahanan, N. Suresh Kumar, A. Vallavaraj (2008), Electronic Devices and Circuits, 2nd edition, Tata McGraw Hill, New Delhi.
- 3. Jimmie J Cathey, "Electronic Devices and Circuits," Schaum's outlines series, 3rd edition, McGraw-Hill (India), 2010.

#### Online Resources /Web References:

1.http://www.acadmix.com/eBooks Download

2.<u>https://www.freebookcentre.net/Electronics/Electronic-Circuits-Books.html</u>

3. <u>https://nptel.iitm.ac.in/courses/108/108/108108122/</u>

4.https://www.classcentral.com/course/swayam-microelectronics-devices-to-circuits-14198

5.https://www.khanacademy.org/science/electrical-engineering

6.<u>http://afrotechmods.com/tutorials</u>

7.http://www.tutorialspoint.com/electronic devices

NARAYANA ENGINEERING COLLEGE:NELLORE									
20EE2001	Electrical Circuit Analysis R2020								
II-B.Tech	Hours / Week			Total	Credit	Max Marks 100			
	L	Т	Р	hrs	С	CIE SEE		TOTAL	
I-Semester	3	0	0	48	3	40	60	100	
Pre-requisi	Pre-requisite: Nil								
Course Objectives:									
1.	To know the analysis of three phase balanced and unbalanced circuits and to measure								
	active and reactive powers in three phase circuits.								
2.	Knowing how to determine the transient response of R-L, R-C, R-L-C series circuits for								
	D.C and A.C excitations.								
3.	To introduce the various two-port networks parameters for a given circuit.								
4.	To evaluation of poles and zeros of a given transfer function.								
5.	To study the different types of filters								
Course Outcomes: After successful completion of the course, the student will be able to:									
CO 1	Understand the analysis of three phase balanced and unbalanced circuits.								
CO 2	Solve the problems in DC transient response for the given circuit.								
CO 3	Solve the problems in AC transient response for the given circuit.								
CO 4	Analyze the given network using different two port network parameters.								
CO 5	Explain about the fundamental and types of filters.								

CO-PO Mapping														
СО	PO PSO								60					
	PO	PO	PO	PO PSO							PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	2									3	3
CO2	3	3	3	2									3	3
CO3	3	3	3	2									3	2
CO4	3	3	3	2									1	2
CO5	2	2	3	2									2	1
1: Low 2-Medium 3- High														

пığı

COURSE CONTENT
MODULE – 1

## **Balanced Three phase circuits**

Three phase circuits: Phase sequence- Star and delta connection-Relation between line and phase voltages and currents in balanced systems-Analysis of balanced three phase circuits-Measurement of Active and Reactive power in balanced Three phase systems.

## Unbalanced Three phase circuits

Analysis of Three Phase unbalanced circuits-Loop Method- Application of Millman's Theorem-Star Delta Transformation Technique – Two Wattmeter Method of measurement of three phase power, Advantages of Three Phase System.

At the end of the Module 1, students will be able to:

1. Explain about advantages of 3-φ circuits over 1-φ circuits

- 2. Distinguish between balanced and unbalanced circuits
- 3. Explain the phasor relationships of voltage, current, power in star and delta connected.
- 4. Measure the active, reactive powers in balanced circuits
- 5. Understand the analysis of unbalanced circuits and power calculations

#### MODULE-2

#### Transient Analysis

Transient Analysis in DC and AC circuits Transient response of R-L, R-C, R-L-C circuits for DC excitations, Solution using differential equations and Laplace transforms.

At the end of the Module 2, students will be able to:

- 1. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in DC excitations
- 2. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in sinusoidal excitations

#### **MODULE-3**

Transient Analysis in DC and AC circuits Transient response of R-L, R-C, R-L-C circuits for AC excitations, Solution using differential equations and Laplace transforms.

At the end of the Module 3, students will be able to:

- 1. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in AC excitations
- 2. Distinguish between classical method and Laplace transform approach in analysing transient phenomenon in sinusoidal excitations

**MODULE-4** 

Two Port Network Parameters: Impedance, Admittance, Transmission and Hybrid Parameters and their relations, reciprocity and symmetry conditions, concept of transformed network, Two Port Network parameters using Transformed Variables

At the end of the Module 4, students will be able to:

- 1. Understand the concept of two port network theory
- 2. Find the transmission line networks for designing the transmission lines.

**MODULE-5** 

Filters

Filters – Low Pass – High Pass and Band Pass – RC, RL filters– derived filters and composite filters design

 Attenuators – Network functions for one port and two port networks, pole-zeros of network functions and network stability.

and network stability.

At the end of the Module 5, students will be able to:

- 1. Understand about Filter, Classification, where they can be used, etc.
- 2. Understand about attenuators and equalizers used in electronic high frequency circuits
- 3. Understand the basic of network synthesis.
- 4. Understand the properties of network function.

Total hours: 48 hours

#### Term work:

Must be submit at least two assignments.

#### Content beyond syllabus:

1. Locus diagram and Electro magnetism

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Analysis of Three Phase	CO1	https://www.youtube.com/watch?v=xaeob9ITXS0
	balanced circuits		
2	Analysis of Three Phase	CO2	https://www.youtube.com/watch?v=xaeob9ITXS0
	unbalanced circuits		
3	Transient response for RL	CO3	https://www.youtube.com/watch?v=2MaPC8Iw7nc
	and RC circuits		
4	Fourier Theorem	CO4	https://nptel.ac.in/courses/108/104/108104139/
5	RC, RL filters	CO5	https://www.youtube.com/watch?v=AGyjYG88LIE
6	basic synthesis procedure	CO6	https://nptel.ac.in/courses/108/102/108102042/
6	basic synthesis procedure	CO6	https://nptel.ac.in/courses/108/102/108

#### Text Book(s):

1. William Hayt, Jack E. Kemmerly and Jamie Phillips, "Engineering Circuit Analysis", Mc Graw Hill, 9th Edition, 2019.

2. A. Chakrabarti, "Circuit Theory: Analysis & Synthesis", Dhanpat Rai & Sons, 2008.

#### Reference Book(s):

1. M.E. Van Valkenberg, "Network Analysis", 3rd Edition, Prentice Hall (India), 1980.

2. V. Del Toro, "Electrical Engineering Fundamentals", Prentice Hall International, 2009.

3. Charles K. Alexander and Matthew. N. O. Sadiku, "Fundamentals of Electric Circuits" Mc Graw Hill, 5th Edition, 2013.

4. Mahamood Nahvi and Joseph Edminister, "Electric Circuits" Schaum's Series, 6th Edition, 2013.

5. John Bird, Routledge, "Electrical Circuit Theory and Technology", Taylor & Francis, 5th Edition, 2014.

6. Sudhakar, A., Circuits and Networks, Tata McGraw

- 7. Suresh Kumar, K.S. Electrical circuits and Networks, Pearson Education.
- 8.Network Analysis and Synthesis Umesh Sinha- Satya Prakashan Publications

9.A. Anand Kumar, Network Analysis and Synthesis, PHI publication

#### Online Resources:

1. http://www.acadmix.com/eBooks_Download

2. http://www.freetechbook.com/software-engineering-f15.html

#### Web References:

1)<u>http://www.mathtutordvd.com/products/Engineering-Circuit-Analysis-Volume-1.cfm</u>

2)<u>http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-002-circuits-</u>

andelectronics-spring-2007/video-lectures/lecture-2/

3) <a href="http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Circuit/Circuit1.html">http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Circuit/Circuit1.html</a>
|                | NARAYANA ENGINEERING COLLEGE:NELLORE                                               |                                       |               |              |              |             |              |               |  |  |  |
|----------------|------------------------------------------------------------------------------------|---------------------------------------|---------------|--------------|--------------|-------------|--------------|---------------|--|--|--|
| 20EE2002       |                                                                                    | D                                     | C MACHINE     | S AND TRA    | NSFORME      | २ऽ          |              | R2020         |  |  |  |
| II-B.Tech      | Н                                                                                  | ours / We                             | ek            | Total        | Credit       |             | Max Mar      | ks            |  |  |  |
|                | L                                                                                  | Т                                     | Р             | hrs          | C            | CIE         | SEE          | TOTAL         |  |  |  |
| I-Semester     | 3                                                                                  | 0                                     | 0             | 48           | 3            | 40          | 60           | 100           |  |  |  |
| Pre-requisi    | ite: Nil                                                                           |                                       |               |              |              |             |              |               |  |  |  |
| Course Obj     | jectives:                                                                          |                                       |               |              |              |             |              |               |  |  |  |
| 1. To          | 1. To understand the constructional features of DC machines.                       |                                       |               |              |              |             |              |               |  |  |  |
| 2. To          | 2. To understand the phenomena of armature reaction and commutation.               |                                       |               |              |              |             |              |               |  |  |  |
| 3. To          | understand                                                                         | the char                              | acteristics   | and parall   | el operatio  | n of dc ma  | achines.     |               |  |  |  |
| 4. To          | 4. To understand the methods for speed control of DC motors and applications of DC |                                       |               |              |              |             |              |               |  |  |  |
| mo             | motors.                                                                            |                                       |               |              |              |             |              |               |  |  |  |
| 5. To          | 5. To understand the various types of losses that occurs in DC machines and how to |                                       |               |              |              |             |              |               |  |  |  |
| cal            | calculate efficiency.                                                              |                                       |               |              |              |             |              |               |  |  |  |
| 6. To          | 6. To understand the constructional features of a single phase transformer.        |                                       |               |              |              |             |              |               |  |  |  |
| 7. To          | 7. To understand the efficiency and voltage regulation of a transformer.           |                                       |               |              |              |             |              |               |  |  |  |
| 8. 10          | understan                                                                          | d the Au                              | totransforn   | ners Cons    | truction &   | Comparı     | son with     | two winding   |  |  |  |
| trai           | nsformer.                                                                          |                                       | 1 /           | C            | <i>.</i> .   | C           | · 1          | <i>,</i> •    |  |  |  |
| 9. IO<br>10 To | suggest a s                                                                        | suitable tr                           | ree phase t   | ransforme    | er connectio | on for a pa | irticular of | beration.     |  |  |  |
| 10.10          |                                                                                    |                                       | stul compl    | tian of th   |              | a ctudont   | will be ab   | a <b>ta</b> : |  |  |  |
| Course Out     | Study on                                                                           | ter succes                            | different     |              | e course, u  | ie student  | tion comm    | e lo:         |  |  |  |
| 01             | DC mook                                                                            | istruction                            | , amerent     | phenomen     | a like: arm  | lature reac | tion, com    | nutation in   |  |  |  |
| 60.3           | DC maci                                                                            | nd about                              | different to  | mag of da    | anaratara    | and signif  | jaanaa of    |               |  |  |  |
| CO 2           | Director                                                                           |                                       |               | pes of de    |              |             |              | JCC.          |  |  |  |
| 03             | Develop                                                                            | mathemat                              | lical relatio | ns for tore  | jue develo   | DC moto     | motor and    | learn about   |  |  |  |
|                | speed – t                                                                          | orque cha                             | racteristics  | of do m      | nt types of  | DC moto     | r. Gain kn   | owledge of    |  |  |  |
| 60.4           | about all                                                                          | tion of 1                             | ing metho     | us of uc III | acinines.    | a transform |              |               |  |  |  |
|                |                                                                                    | 1000000000000000000000000000000000000 | iysical comp  | · 1.         | single phas  |             | mer.         |               |  |  |  |
| 05             | Learn dif                                                                          | ierence b                             | etween two    | windings     | and auto t   | ransforme   | rs.          |               |  |  |  |
|                | Identifica                                                                         | tion of th                            | ree phase t   | ransforme    | rs circuits. |             |              |               |  |  |  |
|                |                                                                                    |                                       |               |              |              |             |              |               |  |  |  |

	CO-PO Mapping													
со		PO PSO												
	PO	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2		2				1	1	2	2	1
CO2	2	2	2	2		2				1	1	2	1	2
CO3	2	2	2	2		2				1	1	2	2	1
CO4	2	3	3	2		2				1	1	2	2	1
CO5	3	3	3	3		2				1	1	2	1	2
	1: Low, 2-Medium, 3- High													

# **COURSE CONTENT**

## MODULE – 1

Principle of Electromechanical Energy Conversion, Energy balance equation, Introduction to DC Generator, principle of operation, Construction details, Design of Armature winding, E.M.F Equation- Numerical problems. Armature Reaction- Cross Magnetizing and De-Magnetizing AT/Pole, Compensating Winding, Commutation, Reactance Voltage, Methods of Improving

Commutation.

.

At the end of the Module 1, students will be able to:

- Able to understand the electromechanical energy conversion system
- Able to understand the construction, operation and armature windings of a DC generator
  - Able to understand the Armature Reaction & Commutation

# MODULE -2

Methods of Excitation – Separately Excited and Self Excited Generators, Build-Up of E.M.F -Critical Field Resistance and Critical Speed, Causes for Failure to Self Excite and Remedial Measures, Characteristics & Applications of Generators.

Parallel Operation of D.C shunt Generators, Series Generators-Use of Equalizer Bar and Cross Connection of Field Windings – Load Sharing.

At the end of the Module 2, students will be able to:

- Able to analyze the types of DC generators
- Able to analyze the characteristics of DC generators
- Able to understand the Parallel of operation of DC generators

# **MODULE-3**

D.C Motor – Principle of Operation, Back Emf, Torque and power developed by armature, Types, Characteristics and Applications of dc Motors, speed control of DC motors(Armature control and Flux control methods), Necessity of starters, constructional details of 3-point and 4-point starters, Calculation of Starter Steps for D.C Shunt Motors.

Power stages in a dc machine, Losses – Constant & Variable Losses, Calculation of Efficiency, Condition for Maximum Efficiency & Numerical Problems. Methods of Testing - Brake Test, Swinburne's Test, Hopkinson's Test, Field's Test, Retardation Test.

At the end of the Module 3, students will be able to:

- Analyze the types of DC motors
- Analyze the characteristics & speed control of DC motors.
- Able to understand the calculation of starter resistance in steps.
- Analyze Power stages and types of losses in a DC machines.
- Able to understand the calculation of Efficiency in DC machines.
- Able to Analyze the testing of DC machines.

# **MODULE-4**

Principle, construction and operation of single-phase transformers, EMF equation, equivalent circuit, phasor diagrams(no load and on load), losses and efficiency, voltage regulation, All Day Efficiency, Testing -open circuit, short circuit tests & Sumpner's test, separation of hysteresis and eddy current losses. Parallel operation of single-phase transformers.

At the end of the Module 5, students will be able to:

- Able to understand the construction & operation of transformer
- To predetermine the efficiency and voltage regulation of a transformer
- Able to understand the parallel operation of single phase transformers.

# **MODULE-5**

Autotransformers-construction, principle, applications and comparison with two winding transformer. Three-phase transformer – construction, types of connection and their comparative features, Phase conversion - Scott connection, Tap-changing transformers - No-load and on-load tap changing of transformers.

At the end of the Module 6, students will be able to:

- Able to understand the Autotransformers
- Able to understand and analyze the phase conversions

Analyze the tap changing of transformers

Total hours: 60 hours

#### Term work:

DC Machines- Lab & Transformers- Filed Work

### Content beyond syllabus:

1. Advanced Speed control techniques for DC Motors.

2. Zigzag/star and V/V connections in a 3-Phase Transformers

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	DC Machines		
	Introduction &	CO1	https://nptel.ac.in/courses/108/102/108102146/
	Constructional features		
2	DC Generator	<u> </u>	https://www.voutube.com/watch?v=TaZiv_sv_io
	Characteristics	02	
3	DC Motor	CO3	https://www.youtube.com/watch?v=GQatiB-JHdl
4	Testing of DC Machines	CO4	https://www.youtube.com/watch?v=8WCbTZPjcTE
5	Transformers	CO5	https://nptel.ac.in/courses/108/105/108105155/
6	Auto Transformers	CO6	https://www.youtube.com/watch?v=lltVwhoPvh0

#### Text Book(s):

1. Electrical Machinery, P.S. Bimbhra, Khanna Publishers, 7th Edition, 2011.

2. Electrical Machines, S K Bhattacharya, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2014, 3rd Reprint 2015.

3. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 2010.

#### Reference Book(s):

1..Electric Machines 4th edition, D.P.Kothari and I.J. Nagrath, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2010, 16th Reprint 2015.

2.A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.

3. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS

Publishers, 2004.

# Online Resources:

1. http://175.101.102.82/moodle/

2. https://www.accessengineeringlibrary.com/

3. https://www.slideshare.net/

4. https://easyengineering.net/electrical-machinery-by-bimbhra/

5.https://books.google.co.in/books?id=dh_gDwAAQBAJ&lpg=PR1&dq=electrical%20machines%20by%20ko thari%202020&pg=PR8#v=onepage&q&f=false

### Web Resources:

1. https://electrical-engineering-portal.com/

- 2. https://www.electrical4u.com/
- 3. http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/Sadhya/experimentlist.html
- 4. https://www.engineering.com/

NARAYANA ENGINEERING COLLEGE:NELLORE										
20EE2501		DC	<b>MACHINES</b>	AND TRAN	SFORMERS	Lab		R2020		
II-B.Tech	Н	ours / Wee	ek 🛛	Total	Credit		Max Mar	ks		
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
I-Semester	0	0	3	30	1.5	40	60	100		
Pre-requisi	Pre-requisite: Nil									
Course Obj	Course Objectives:									
1. To	1. To familiarize students about OCC and internal, external characteristics of dc									
shu	shunt generator.									
2. To	2. To know the performance characteristics and speed control method of dc shunt									
mo	TOL									
3. To	know how	to predete	ermine the	efficiency	of dc shu	nt motor.				
4. To	find effici	iency, loss	es and reg	ulation of	single pha	se transfor	mer.			
5. To	know how	to find me	otor and g	enerator et	fficiency b	y connecti	ng to dc			
shu	nt machine	es back to	back		-	-	-			
6. To	familiariz	e students	about cha	racteristics	s of dc seri	es motor				
Course Out	<b>irse Outcomes</b> : After successful completion of the course, the student will be able to:									
CO 1	Determine the magnetization and load characteristics of a DC shunt generator									
CO 2	Describe th	ne efficiend	cy and perf	formance c	haracterist	ics of DC 1	motors			
CO 3	Predetermi	nation of t	ransforme	with diffe	rent loads					
L										

# List of Experiments Prescribed and Conducted:

- **1.** Conduct an Experiment to obtain OCC Characteristics of dc Shunt generator.
- **2.** Conduct Brake test on dc shunt motor to obtain performance characteristics.
- **3.** Conduct speed control methods of dc shunt motor.
- **4.** Conduct Swinburne's test on a DC Shunt machine.
- **5.** Conduct OC and SC test on single phase transformer
- 6. Conduct Sumpner's test on two identical transformers
- 7. Conduct load test on single phase transformer
- **8.** Conduct an Experiment to obtain internal and external characteristics of dc shunt generator.
- 9. Conduct an experiment from 3phase to 2 phase conversion by using Scott Connection
- **10.** Conduct load test on dc series motor.

Total hours: 30 hours

	CO-PO Mapping													
СО		РО											PSO	
	PO 1	PO 2	РО 3	PO 4	PO 5	PO 6	РО 7	РО 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2							2	2			3	2
CO2	2	3							2	2			3	2
CO3	3	3							2	2			3	2
CO4	2	2							2	2			3	2
CO5	2	2							2	2			3	2
CO6	2	2							2	2			3	2
	1: Low, 2-Medium, 3- High													

NARAYANA ENGINEERING COLLEGE:NELLORE											
20EE2502Electrical Circuits And Simulation LabR2020											
II-B.Tech		Hours / Wee	k	Total hrs	Credit		Max Ma	arks			
	L	Т	Р		С	CIE	SEE	TOTAL			
I-Semester	0	0	3	30	1.2	40	60	100			
Pre-requisit	te: Basic c	of Electrical of	circuit								
Course Ob	jectives:										
The objecti	ves are to s	tudy:									
1. To design	n electrical	systems.									
2. To analyz	ze a given n	etwork by a	ipplying va	rious Netw	ork Theore	ems.					
3. To measu	ure three p	hase Active	and Reacti	ve power.							
4. To under	stand the l	ocus diagra	ms								
List of Experiments											
PART A											
1.	Measuren	nent of Activ	ve Power fo	or Star Coni	nected Bal	lanced Loads	5				
2.	Measuren	nent of Read	tive Power	for Star Co	onnected I	Balanced Loa	ads				
3.	Measuren	nent of 3-Ph	ase Power	by Two Wa	attmeter N	Aethod for L	Inbalance	d Loads			
4.	Measuren	nent of Activ	/e Power fo	or Delta Co	nnected Ba	alanced Load	ds 11. Mea	asurement of			
_	Reactive P	ower for De	elta Conneo	cted Balanc	ed Loads						
5.	Locus Diagram of KL Series Circuits: a) variable "R" and Fixed "L" b) Variable "L" and Fixed										
	'K'										
6.	Locus Diag	gram of RC S	Series Circu	its: a) Varia	able 'R' and	d Fixed 'C' b	) Variable	'C' and Fixed			
7.	Constant I	K Low-Pass a	and High-Pa	ass Filter.							
8.	Constant H	<pre>K Band-Pass</pre>	and Band-	Eliminatior	n Filters.						
9.	Study of F	ull Wave Re	ctifier with	and witho	ut Filters						
<b>PSPICE Sim</b>	ulation Exp	periments:									
1. Simulatio	on of DC Cir	rcuits									
2. Simulatio	on of AC Cir	rcuits									
3. DC Trar	nsient Resp	onse									
4. Mesh An	alysis										
5. Nodal Ar	nalysis										
Course Out	comes:										
At the end	of the cour	se, students	will be ab	e to							
1. The stud	ent will ana	alyze the cha	aracteristic	s of Electric	cal circuits	& P Spice Si	mulation.				
2. To Perfo	rm Laborate	ory Experim	ents practi	cally.							
3. To carry	out laborat	ory experim	nents on sir	nulation &	Networks						
4. To under	stand the f	undamenta	ls of electri	cal circuits	& P Spice	simulation					
Text Books											
1. David A.	Bell, Funda	mentals of	Electric Ciro	cuits: Lab N	1anual OU	P Canada, 71	th Edition,	2009.			
2. Muhamr	mad H. Ras	shid, Introdu	uction to P	SPICE usin	g OrCAD f	for Circuits a	and Electr	onics, Pearson			
Education,	3rd Edition	, 2003.									

	CO-PO Mapping													
СО		PO PSO												
	PO	РО	PO	PO	PO	PO	РО	PO	РО	PO	РО	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2			1				2	2			3	2
CO2	2	3			1				2	2			3	2
CO3	3	3			1				2	2			3	2
CO4	2	2			1				2	2			3	2
	1: Low, 2-Medium, 3- High													

#### Department of E.E.E :: 2020-2021

## NECR B.Tech 20 SEMESTER IV



Subject	Category	Course Title	Со	ntact	Peri week	ods per	Credits	Schemo N	Scheme of Examination Max. Marks				
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks			
20EE2003	PC	Analog Electronic Circuits	2	0	0	2	2	40	60	100			
20EE2004	PC	Electro Magnetic Fields	3	0	0	3	3	40	60	100			
20EE2005	PC	Induction Motors and Synchronous Machines	3	0	0	3	3	40	60	100			
20EE2006	PC	Linear Control Systems	3	0	0	3	3	40	60	100			
20EE2007	PC	Power Generation & Transmission	3	0	0	3	3	40	60	100			
-	OE	Open elective I	3	0	0	3	3	40	60	100			
20EE2503	PC	Analog Electronics and Simulation Lab	0	0	2	2	1	40	60	100			
20EE2504	PC	Induction Motors and Synchronous Machines Lab	0	0	3	3	1.5	40	60	100			
20CD6002	SC	Career competency Development II	0	0	2	2	1	40	60	100			
20CC6002	SC	Value added course/Certificate course II	0	1	0	1	1	40	60	100			
		Counseling/Mentoring	0	0	1	1	0						
		Sports/Hobby Clubs/Activities	0	0	2	2	0						
		Activity Point Programme		Dı	uring	the Seme	ster		20 Points				
		Total	17	1	10	28	21.5	400	600	1000			

NARAYANA ENGINEERING COLLEGE:NELLORE														
20EE2003				A	NALOG	ELECT	RONIC	CIRCU	ITS				R2020	)
II-B.Tech		Н	ours / V	Veek		Tota	al hrs	Credi	t		Ν	lax Ma	rks	
	L		Т		Р			С		CIE		SEE	TO	TAL
II-Semester	2		0		0	3	36	2		40		60	1	00
Pre-requisit	e: Bas	ic kno	wledge	on co	ncepts	of elec	tronic	device	s.					
Course Obje	ectives	:												
To int	troduc	e linea	ar and 1	non lin	lear wa	ve sha	ping o	circuits						
• To ex	cplain	the e	ffect of	f nega	tive fe	edbacl	kona	amplifi	ier ch	aracteri	stics 1	RC &	LC osci	llator
circui	ts			0										
• To an	• To analyze single and multi stage amplifiers													
• To int	troduc	e diffe	erent tv	nes of	large s	ionala	mnlif	iers						
• To hi	iouuc			pes 01	large 3			1015						
• 10 dis	scuss (	p-am	penara	cteristi	cs and	applic	cations							
Course Outcomes: After sussessful completion of the source, the student will be able to:														
Course Outcomes: After successful completion of the course, the student will be able to:														
<b>CO 1</b> Demonstrate the concept of linear and non linear wave shaping circuits. (BL-02)														
CO 2	Illu	strate t	the cond	cept of	differe	nt type	s of fe	edback	ampl	ifiersan	dOscill	ators.(1	3L-02)	
CO 3	Ana	lyze va	arious c	onfigur	ations of	of singl	e stage	and m	ultista	ge ampli	fiers.(l	BL-04)		
CO 4	Ana	lyze th	ne opera	tion an	d chara	cteristic	cs of P	ower A	mplifi	ers.(BL-	02)			
CO 5	Inte	rpret th	ne chara	cteristi	cs and a	applicat	tions C	peratio	nal Ar	nplifier.	(BL-02	2)		
						CO-PO	Mapp	ing						
CO						P	0	0					PS	60
	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	РО	PSO1	PSO
	1	2	3	4	5	6	7	8	9	10	11	12		2
CO1	3	2	2										3	
CO2	3	2	2										3	
CO3 3 3 2 2 2														
CO4	CO4 3 3 2 2													
CO5	3	2	2									1	3	
	1: Low. 2-Medium. 3- High													
L	1: Low, 2-Medium, 3- High													

	COURSE CONTENT				
MODULE – 1	Wave Shaping Circuits	Hours: 10			
Line Were Charles High and the DC similar of this second for Circuit 1 Com					

Linear Wave Shaping: High pass and low pass RC circuits and their response for Sinusoidal, Step, Pulse, Square & Ramp inputs, High pass RC network as Differentiator, Low pass RC circuit as an Integrator.

**Non-Linear Wave Shaping**: Diode clippers, Transistor clippers, Clipping at two independent levels. Clamping Operation, Clamping circuit by considering Source and Diode resistances

At the end of the Module 1, students will be able to:

- 1. Understand the concept of high pass and low pass RC circuits. (BL-02)
- 2. Observe the response of Sinusoidal, step, pulse, square & ramp inputs.(BL-01)
- 3. Understand the working principle of Clippers and Clampers. (BL-02)

 MODULE – 2
 Feedback Amplifiers and Oscillators

 DBACK_AMPLIEREDS:
 Feedback amingials and concerns to the set of feedback

Hours: 10

**FEEDBACK AMPLIFIERS:** Feedback principle and concept, types of feedback, feedback topologies, Characteristics of negative feedback amplifiers, Determination of input & output impedance of voltage series, voltage shunt, current series & current shunt configurations

**OSCILLATORS:** Oscillator principle, condition for oscillations, types of oscillators, Hartley oscillator, Colpitt's oscillator, RC-phase shift oscillator, Wein bridge oscillator,

At the end of the Module 2, students will be able to:

- 1. Understand the concept of feedback connection to an amplifier. (BL-02)
- 2. Identify different types of feedback topologies.(BL-01)
- 3. Summarize input and output impedance of various feedback configurations.(BL-02)
- 4. Compare characteristics of various types of feedback configurations.(BL-02)
- 5. Understand the working principle of oscillator. (BL-02)
- 6. Explain various LC oscillators by calculating frequency of oscillations and condition for oscillations.(BL-02)
- 7. Explain various RC oscillators by calculating frequency of oscillations and condition for oscillations.(BL-02)

MODULE – 3	Single Stage & Multistage Amplifiers	Hours: 09

**Single Stage Amplifiers:** Transistor hybrid model, determination of h-parameters, generalized analysis of transistor amplifier model using h-parameters, analysis of CB, CE and CC amplifiers.

Multi Stage Amplifiers: Classification of amplifiers, Different coupling techniques, Cascaded amplifier, Cascode amplifier.

At the end of the Module 4, students will be able to:

- 1. Understand the concept of hybrid model for analysis of transistor amplifier circuit. (BL-02)
- 2. Understand the role of different coupling schemes in cascading. (BL-02)
- 3. Analyze various multistage amplifiers.(BL-04)
- Study two stage transistor amplifier circuits viz., Cascade amplifiers &Cascode amplifiers. (BL-02)

MODULE – 4	Power Amplifiers	Hours: 09

Classification, Series fed Class A large signal Amplifier, Transformer Coupled Class A large signal amplifier, Amplifier Distortion, Push- pull Class B Amplifier, Complementary Symmetry Class B Amplifier, Push- pull Class AB Amplifier, Complementary Symmetry Class AB Amplifier, class D amplifier, Heat sink and Thermal stability.

At the end of the Module 5, students will be able to:

- 1. Understand the role of power amplifier in multistage amplifiers. (BL-02)
- 2. Classify power amplifiers based on conduction angle. (BL-02)
- 3. Understand various distortions in amplifiers.(BL-02)
- 4. Demonstrate complementary symmetry topologies. (BL-02)

5. Find conversion efficiency of various topologies.(BL-01)

MODULE – 5	Hours: 10	
Introduction, ideal and	d practical Op-amp, Op-amp characteristics - DC an	d AC characteristics, 741
Op-amp and its feature	es, modes of operation-inverting, non-inverting, diffe	rential. Basic applications
of Op-amp, instrume	ntation amplifier, , sample & Hold circuits, Diffe	erentiator and Integrator,

Comparators, Schmitt trigger, Multivibrators, Introduction to voltage regulators

At the end of the Module 6, students will be able to:

- 1. Understand the concept of operational amplifier. (BL-02)
- 2. compare various modes of op-amp operation. (BL-02)
- 3. list the applications of operational amplifer.(BL-01)
- 4. Understand the concept of Multivibrators. (BL-02)

Total hours: 48 hours

#### Term work:

1. Model a single stage amplifier on PCB.

2. Model a multistage amplifier on PCB.

- 3. Model a Hartley oscillator on PCB
- 4. Survey and Submit a report on audio power amplifiers available in market.
- 5. Survey and Submit a report on oscillators available in market.
- 6. Survey and Submit a report on various op-amps available in market.

#### Content beyond syllabus:

- **3.** Design of two stage RC coupled amplifier using FET-small signal analysis
- 4. Differential amplifier-CMRR, Common mode gain, Differential gain, Modes of operation.

#### Self-Study:

Contents to promote self-Learning:

SNO	Module	Reference
1	Wave Shaping Circuits	https://www.tutorialspoint.com/electronic_circuits/electronic_circ uits_nonlinear_wave_shapping.htm
2	Feedback Amplifiers	https://www.tutorialspoint.com/amplifiers/amplifiers_feedback.ht m
3	Oscillators	https://www.tutorialspoint.com/sinusoidal_oscillators/sinusoidal_ oscillators_introduction.htm
4	Single Stage &Multistage Amplifiers	https://www.tutorialspoint.com/amplifiers/multi_stage_transistor _amplifier.htm
5	<b>Power Amplifiers</b>	https://www.tutorialspoint.com/amplifiers/classification_of_powe r_amplifiers.htm
6	Op-Amp Characteristics	https://www.electronicstutorials.ws/opamp/opamp_8.html

#### Text Book(s):

1. Millman"s Pulse, Digital and Switching Waveforms –J. Millman, H. Taub and Mothiki S. PrakashRao, 2 Ed., 2008, TMH.

2. Donald A. Neaman, "Electronic Circuit Analysis and Design", McGraw Hill. 3. Op-Amps & Linear ICs – Ramakanth A. Gayakwad, PHI, 2003.

#### **Reference Book(s):**

1. Robert T. Paynter, "Introductory Electronic Devices and Circuits", Pearson Education, 7th Edition

2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory" Pearson/Prentice Hall, 9th Edition, 2006.

3. Sedra A.S. and K.C. Smith, "Micro Electronic Circuits", Oxford University Press, 5th Edition.

4. Integrated Electronics, Jacob Millman, Christos C Halkias, TMH

5. Electronic Devices and Circuits, David A. Bell – 5thEdition, Oxford.

6. Electronic Circuit Analysis 4th Edition – by K. Lal Kishore, BS Publications.

### Online Resources/Web references:

1.<u>https://www.academia.edu/28016003/EDC_by_Lal_kishore</u>

2.<u>https://www.academia.edu/9984476/Electronic_devices_and_circuit_theory_robert_boylestad_1_</u>

- 3. Donald A. Neaman, "Electronic Circuit Analysis and Design", McGraw Hill.
- $4. \underline{https://nptel.ac.in/courses/122/106/122106025/}$
- 5. <u>https://www.tutorialspoint.com/semiconductor_devices/index.htm</u>
- 6. <u>https://www.allaboutcircuits.com/textbook/semiconductors/</u>
- 7.http://www.satishkashyap.com/

NARAYANA ENGINEERING COLLEGE:NELLORE												
20EE2004		E	LECTRO	MAGNET	<b>FIEL</b>	DS		R2020				
II-B.Tech	Н	ours / We	ek	Total	Credit		Max Mar	`ks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
II-Semester	3	0	0	48	3	40	60	100				
Pre-requis	site: Nil											
Course Ob	rse Objectives:											
1. To review	review the fundamentals of the different coordinate systems, vector algebra and calculus											
2. To teach	the basic l	he basic laws of electromagnetism										
3. To learn	to compute	e and visu	alize the e	lectrostati	c and mag	netostatic	fields for s	simple				
configuration	ons	S										
4. To analys	se the time varying electric and magnetic fields and to understand Maxwell's											
equations												
5. To under	stand the p	propagatic	on of electr	omagnetic	waves the	ough diffe	erent medi	a				
Course Ou	tcomes: A	After succ	cessful co	mpletion	of the cou	rse, the st	udent will	be able to:				
CO 1	Ability t	o identify	appropriat	te coordination	ate system	s and visu	alize and u	inderstand				
	the pract	cal signif	icance of v	vector calc	ulus							
CO 2	Understa	inding of	the basic la	aws of elec	ctrostatics,	Ability to	compute,	visualize				
	electrostatic fields along with practical applications											
CO 3	Understa	nding of t	he basic la	ws of mag	gnetostatic	8						
<b>CO 4</b>	Ability to compute, visualize magneto static fields along with practical											
	applications											
CO 5	Understa	nding of N	Maxwell's	equations	in differer	nt forms ar	nd medium	1				
		-										

	CO-PO Mapping													
СО	PO												PS	0
	PO P											PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2									2	1
CO2	3	3	2	2									2	1
CO3	3	3	1	1									2	1
CO4	3	3	2	2									2	1
CO5	<b>CO5</b> 3 3 2 2 1 2 1													
	1: Low, 2-Medium, 3- High													

## **COURSE CONTENT**

## MODULE – 1

# ELECTROSTATICS -I

Vector algebra, Coordinate systems, Vector calculus- Gradient, Divergence and Curl theorems and applications, Sources and effects of electromagnetic fields, Coulomb's Law – Electric field intensity – Field due to discrete and continuous charges – Gauss's law and its applications.

At the end of the Module 1, students will be able to:

1. Recollect the basic concepts Vectors

2. Understand the applications of Electrostatics

3. Illustrate the basic laws of Electrostatics

# MODULE -2

# ELECTROSTATICS -II

Electric potential – Electric field and equipotential plots– Electric field in free space, conductors, dielectric -Dielectric polarization – Dielectric strength - Electric fields in multiple dielectrics – Boundary conditions, capacitance, Energy density, Poisson's and Laplace's equations.

At the end of the Module 2, students will be able to:

- 1. understand the concept of Electric potential
- 2. Differentiate between conductor and dielectric in electric field

# **MODULE-3**

## MAGNETOSTATICS-I

Magnetic field intensity (H) – Biot– Savart's Law - Ampere's Circuit Law – H due to straight conductors, circular loop, infinite sheet of current, Magnetic flux density (B) – Magnetic force, Lorentz force, force between two conductors,- Boundary conditions.

At the end of the Module 3, students will be able to:

- 1. Understand the basic laws of Magnetostatics
- 2. Analyze the concept of magnetic force

# **MODULE-4**

# MAGNETOSTATICS-II

Scalar and vector potential, Poisson's Equation, Torque, Inductances and mutual inductances, Neumann's formula, Energy density, Numerical problems.

At the end of the Module 4, students will be able to:

- 1. Apply the poisson's & Laplace's equations to different problems
- 2. Analyze the inductance of different coil combinations

# MODULE-5

# ELECTRODYNAMIC FIELDS

Magnetic Circuits - Faraday's law – Transformer and motional EMF – Displacement current - Maxwell's equations (differential and integral form) – Time varying potential – Relation between field theory and circuit theory, Applications.

At the end of the Module 5, students will be able to:

- 1. Understand the Faraday's law of electromagnetic induction
- 2. Analyze the Maxwell's equations for static and time varying fields

Total hours: 48 hours

## Term work:

## Content beyond syllabus:

1. Electric power transmission

## Self-Study:

Contents to promote self-Learning:

SNO	Торіс	CO	Reference
1	Gauss's law and its	CO1	https://www.youtube.com/watch?v=M0GInI0vNh
	applications		<u>8</u>
2	Poisson's and	CO2	https://www.youtube.com/watch?v=I-lKnLnnbY4
	Laplace's equations		
3	Biot-Savart's Law	CO3	https://www.youtube.com/watch?v=X9mYh8aG2
			AQ
4	Neumann's formula	CO4	https://www.youtube.com/watch?v=iVANETIf3c
			<u>M</u>
5	Displacement current	CO5	https://www.youtube.com/watch?v=77PZPBXMl
			<u>1w</u>
6	Wave parameters;	CO6	https://www.youtube.com/watch?v=z_L58oLkW
	velocity, intrinsic		<u>c</u>
	impedance,		
	propagation constant		

## Text Book(s):

1. Mathew N. O. Sadiku, S.V.Kulkarni, 'Principles of Electromagnetics', 6th Edition, Oxford University Press, 2015, Asian Edition

2. William H. Hayt and John A. Buck, 'Engineering Electromagnetics', Tata McGraw Hill ,8th Revised edition, 2014

3. Joseph. A.Edminister, 'Schaum's Outline of Electromagnetics, Third Edition (Schaum's Outline Series), Tata McGraw Hill, 2010

### **Reference Book(s):**

1. Bhag Singh Guru and Huseyin R. Hiziroglu "Electromagnetic field theory

fundamentals", Cambridge University Press; Second Revised Edition, 2009.

2. Ashutosh Pramanik, 'Electromagnetism – Theory and Applications', PHI Learning Private Limited, New Delhi, Second Edition-2009

## **Online Resources:**

1. <u>http://alumni.media.mit.edu/~aggelos/papers/EM_Hayt_6th.pdf</u>

2. <u>https://nptel.ac.in/courses/108/106/108106073/</u>

## Web Resources:

1.

https://www.youtube.com/watch?v=pGdr9WLto4A&list=PLl6m4jcR_DbOx6s2toprJQx1MORq Pa9rG

2. <u>https://www.youtube.com/watch?v=G5P6dInMTFg&list=PLuv3GM6-gsE3-hVNaw-YEb7EeY5XVPZdz</u>

	1	IARAYA	NA ENGI	NEERING	COLLEG	E:NELLO	RE						
20EE2005	005         INDUCTION MOTORS AND SYNCHRONOUS MACHINES         R2020           Task         Nas												
II-B.Tech	Н	Hours / Week Total Credit Max Marks											
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
II-Semester	3	0	0	48	3	40	60	100					
Pre-requisite: Nil													
Course C	Objectives:												
1. 7	Fo understand	l the Con	structional	details, p	rinciple of	operation	and the in	nportance of					
S	lip in Inducti	on motor	operation		_								
2. 1	To understand	the slip-	torque cha	racteristic	s and torqu	ue calculat	ions of In	duction					
1	notor	1.1 .1	1 6 4	1	1 /	1 CT 1	,• ,						
3.	l'o understand	the meth	ods of star	ting and s	peed contr	ol of Induc	ction moto	r 1 ·					
4.	l'o understand	the cons	truction an	d principle	e of workin	ig of synch	ironous m	achines					
	5. To understand the different methods of predetermining the regulation of alternators												
0.	to understan	a the cor	icepts and	computat	101 101 102	ia snaring	among a	iternators in					
7 7	Darallel.	the norf		horostarist	ion of aum	hronous	notors and	their use of					
1	vnobronous	i tile perio	s for powe	r footor in	nes of sync	+		then use as					
8 7	Fo understand	the diff	s ioi powe	a f single	phase mo	i. Nors and s	mecial mo	otors used in					
0. j	ouse hold an	nliances a	and control	systems	phase inc		special life	tors used in					
Course (	Dutcomes: Af	er succes	sful comple	etion of the	e course, th	ne student	will be abl	e to:					
CO 1		e the basi	c knowled	ge of cons	truction w	orking and	d operation	n of					
001	induction	motor.		50 01 00115	er de troni, w	orking un	a operation						
CO 2	Identify of	lifferent s	peed contr	olling tech	niques of ]	Induction	motor for t	he given					
	application	on.		0	1			8					
CO 3	To impar	t knowled	lge on Con	struction a	and perform	nance of s	alient and	non –					
	salient ty	pe synchr	onous gene	erators and	l determine	e how seve	ral alterna	tors running					
	in paralle	share the	e load on tl	he system.				U					
CO 4	Analyze	the perfor	mance cha	racteristics	s of synchr	onous mot	ors.						
CO 5	<b>CO 5</b> To impart knowledge on Construction, principle of operation and performance of												
	single ph	ase induct	tion motors	s and spec	ial machin	es.							
				<u> </u>									

	CO-PO Mapping													
СО		PO PSO												
	PO	PO P												
	1 2 3 4 5 6 7 8 9 10 11 12 1 2													
CO1	3	3 2 1 2 2												
CO2	3	2	2										2	2
CO3	3	2	2										2	2
CO4	CO4 3 2 1 2 2													
CO5	CO5 3 2 1 2 2 2													
	1: Low, 2-Medium, 3- High													

# **COURSE CONTENT**

# MODULE – 1

Polyphase Induction Motors-Constructional Details of Cage and Wound Rotor Machines, Production of Rotating Magnetic Field, Principle of Operation, Slip, Rotor Emf and Rotor Frequency, Rotor Reactance, Rotor Current and Power factor at Standstill and under running conditions, Rotor Power Input, Rotor Copper Loss and Mechanical Power Developed and Their Inter Relationship.

At the end of the Module 1, students will be able to:

- Able to Analyze Production of Rotating Magnetic Field.
- Able to understand Cage and Wound Rotor Machines.

## MODULE -2

Torque Equation, Expressions for Maximum Torque and Starting Torque, Torque Slip Characteristic, Load characteristics, Equivalent Circuit, Phasor Diagram, Crawling and Cogging, Circle Diagram, No Load and Blocked Rotor Tests-Predetermination of Performance.

Starting Methods and Starting Current and Torque Calculations, Speed Control-Change of Frequency; Pole Changing and Methods of Consequent Poles; Cascade Connection. Injection of an Emf.

At the end of the Module 2, students will be able to:

- Able to Analyze Torque Slip Characteristics
  - Able to understand Starting Methods of Induction Motors

### **MODULE-3**

Principle and Constructional Features of Salient Pole and Round Rotor Machines – Armature Windings, E.M.F Equation- Armature reaction – Voltage Regulation Methods, Power Flow Equation in Alternators – Synchronizing Power and Torque – Parallel Operation and Load Sharing – Effect of Change of Excitation and Mechanical Power Input – Determination of Sub-Transient, Transient and Steady State Reactances.

At the end of the Module 3, students will be able to:

- Able to understand the construction and principle of operation of synchronous generators.
- Able to understand the Voltage Regulation Methods.
- Able to understand the parallel operation of synchronous generators.
- Able to understand the Sub-Transient, Transient and Steady State Reactances.

### **MODULE-4**

Synchronous Motors Operation – Phasor Diagram – Power Flow Equations in Synchronous Motors- Variation of Current and Power Factor with Excitation – V and Inverted V Curves – Synchronous Condensers – Hunting, and Methods to Eliminate Hunting – Starting Methods of Synchronous Motor.

At the end of the Module 4, students will be able to:

- Able to understand the operation of synchronous motors.
- Able to understand the Starting Methods of Synchronous Motor.

## MODULE-5

Single Phase Induction Motors - Constructional Features – Double Revolving Field Theory-Elementary Idea of Cross Field Theory – Split Phase Motors – Capacitor Start and Run Motors – Shaded Pole Motor. Principle and Performance of A.C Series Motor - Universal Motor – Single Phase Synchronous Motors – Reluctance Motor – Hysteresis Motor – Stepper Motor.

At the end of the Module 5, students will be able to:

- Able to understand the operation of Single Phase Induction Motors.
- Able to understand the special Electrical Machines.

Total hours:48 hours

### Term work:

Synchronous machines & Induction machines- Power plants & Industrial visits.

### Content beyond syllabus:

1. Advanced Speed Control methods for Poly phase Induction Motors.

- 2. Two Reaction Theory Determination of Xd and  $X_q$  (Slip Test).
- 3. Principle of operation and control of Brushless DC motor.

### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	3-phase Induction Motors	CO1	https://nptel.ac.in/courses/108/102/108102146/
2	Circle Diagram	CO2	https://nptel.ac.in/courses/108/105/108105131/
3	Synchronous Generator	CO3	https://www.youtube.com/watch?v=b24jORRoxEc
4	Parallel operation of Alternators	CO4	https://www.youtube.com/watch?v=aZR7JsH9Qn M
5	Synchronous motor	CO5	https://www.youtube.com/watch?v=fdMIuEqh48 M&list=PLPpCFgQP7QKHSJQnSwaigL89gshecy cXs
6	Single Phase Induction motors	CO6	https://nptel.ac.in/courses/108/102/108102146/

### Text Book(s):

- 1. Electrical Machinery, P.S. Bimbhra, Khanna Publishers, 7th Edition, 2011.
- Electric Machines 4th edition, D.P.Kothari and I.J. Nagrath, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2010, 16th Reprint 2015.
- Electrical Machines, S K Bhattacharya, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2014, 3rd Reprint 2015.

### Reference Book(s):

1..Electric Machines 4th edition, D.P.Kothari and I.J. Nagrath, Mc Graw Hill Education (India) Pvt. Ltd., 4th Edition, 2010, 16th Reprint 2015.

2.A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 2013.

3. A. E. Clayton and N. N. Hancock, "Performance and design of DC machines", CBS Publishers, 2004.

### **Online Resources:**

1. http://175.101.102.82/moodle/

2. https://www.accessengineeringlibrary.com/

3. https://www.slideshare.net/

4. https://easyengineering.net/electrical-machinery-by-bimbhra/

5.https://books.google.co.in/books?id=dh_gDwAAQBAJ&lpg=PR1&dq=electrical%20machines%20by%20 kothari%202020&pg=PR8#v=onepage&q&f=false

# Web Resources:

- https://electrical-engineering-portal.com/
   https://www.electrical4u.com/
   http://vlabs.iitb.ac.in/vlabs-dev/vlab_bootcamp/bootcamp/Sadhya/experimentlist.html
   https://www.engineering.com/

NARAYANA ENGINEERING COLLEGE:NELLORE												
20EE2006			LINEAR	CONTROLS	SYSTEMS			R2020				
II-B.Tech	Н	ours / Wee	ek	Total	Credit		Max Mar	ks				
	L	Т	Р	hrs	С	CIE	CS	TOTAL				
11-	3	0	0	48	3	40	60	100				
Semester												
Pre-requisit	requisite: Basics concepts of Electrical Circuits & Basics of Laplace transform											
Course Obj	ectives:	ctives:										
1.	To unders	o understand the merits and demerits of open and closed loop control systems										
2.	To unders	o understand the mathematical modeling of Electrical and mechanical control										
	systems	systems										
3.	To unders	To understand the step response of second order control systems										
4.	To plot Ro	pot locus fo	or the give	n system tr	ansfer fun	ction						
5.	To unders	stand the s	tability and	alysis from	Bode plot,	polar plot	S					
6.	To unders	stand the s	tate space	analysis								
Course Out	comes: Af	ter success	ful compl	etion of th	e course, t	he student	will be abl	e to:				
CO 1	Determin	e the trans	fer functio	n for the g	iven electri	cal or mec	hanical syst	tems and also				
	determine	e the trans	fer functio	n of a syst	em using b	olock diagra	am reductio	on techniques				
	and Maso	on's gain fo	rmula									
CO 2	Analyze th	ne system k	pehaviour in	n time dom	ain and ste	p response	to various	dampings.				
CO 3	Determine the stability of given system by applying Routh's stability criteria.											
CO 4	Analyze t	Analyze the stability of given system by means of Bode plot and polar plot										
CO 5	Determin	e the state	model and	l assessmer	nt of control	ollability &	observabi	lity from the				
	given tran	sfer function	on.									

	CO-PO Mapping													
СО		PO PSO												
	PO	PO   PO   PO   PO   PO   PO   PO   PO												
	<u>1 2 3 4 5 6 7 8 9 10 11 12 1 2</u>													
CO1	3	2												1
CO2	2	1												1
CO3	2	1												1
CO4	<b>CO4</b> 2 1 1 1 1													
CO5	<b>CO5</b> 2 1 1 1 1													
	1: Low, 2-Medium, 3- High													

MODULE – 1 Examples & Classification of control systems, merits and demerits of Open Loop and closed loop control systems, Effects of positive and negative feedback. (3H)

**COURSE CONTENT** 

Mathematical modelling and transfer function of Electrical and Mechanical systems, Analogous systems, modelling of DC motor(4h)

Block diagrams: Block diagram representation of control systems, Block Diagram Reduction Rules .(4h) Signal flow graph: Definitions, Reduction using Mason's gain formula.(3h)

Control System Components: DC Servo motor, AC Servo motor, Synchro Transmitter & Receiver (2h)

At the end of the Module 1, students will be able to:

1. Identify the difference between open loop and closed loop systems

2. Understand the effect of feedback on system performance

3. Model the given electrical or mechanical control system

4. Apply the block diagram reduction to simplify the given system

5. Apply the Signal flow graph reduction to simplify the given system

6. Derive the transfer function of Ac and DC servo motor

#### MODULE-2

Time Response Analysis: Standard test signals, Time response of first order and second order un damped, under damped, critically damped and over damped systems, Time domain specifications. (5h) Error Analysis: Steady state Error, static error coefficient of type 0,1, 2 systems (2h)

At the end of the Module 2, students will be able to:

- 1. Identify the importance of basic test signals
- 2. Analyze the Time response of second order system with different dampings
- 3. compute steady state error for the given system for any input signal.

### **MODULE-3**

Stability: The concept of stability, Routh's stability criterion, limitations of Routh's stability.(4h) Root locus plot: The root locus concept, construction of root loci, effects of adding poles and zeros to G(s)H(s) on the root loci. (5h)

At the end of the Module 3, students will be able to:

- 1. Understand various stability issues
- 2. Apply Routh's stability criteria to given system for stability assessment
- 3. Draw Root locus plot for the given system

### MODULE-4

Frequency Response Analysis :Introduction, Frequency domain specifications, Bode plot, polar plot, Transfer function from the Bode Diagram, Stability Analysis from Bode Plots. Polar Plots, Nyquist Plots. (6h)

Compensation Techniques: Lag, Lead, Lag-Lead Compensators.(3h)

At the end of the Module 4, students will be able to:

- 1. Understand various frequency domain specifications.
- 2. Draw the Bode plot for the given system.
- 3. Determine the stability of given system from Bode plot and polar plot

### **MODULE-5**

State Space Analysis

Introduction: Concepts of state, state variables and state model, derivation of state models from differential equations, Diagonalization. (5h)

Solution of state equation: Solving the Time invariant state Equations, State Transition Matrix and it's Properties. (2h)

The concepts of controllability and observability. (2h)

At the end of the Module 5, students will be able to:

- 1. Understand the importance of state space analysis
- 2. Find the state model for the given transfer function through various techniques.
- 3. Determine the controllability and observability of given state model.

Total hours: 48 hours

Term work: Tutorials & quizzes

### Content beyond syllabus:

**1.** Introduction to P,PI,PID controllers.

2. State space representation of Armature and Field controlled DC motor.

#### Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Open Loop and closed	CO1	https://www.tutorialspoint.com/control_systems/control
	loop control systems		systems_introduction.htm
2	Block diagram rules	CO2	https://www.tutorialspoint.com/control_systems/control
			systems_block_diagram_algebra.htm
3	Time response of	CO3	https://www.tutorialspoint.com/control_systems/control
	second order system		systems_time_response_analysis.htm
4	Routh's stability	CO4	https://www.tutorialspoint.com/control_systems/control
	criteria		systems_stability_analysis.htm
5	Frequency domain	CO5	https://www.tutorialspoint.com/control_systems/control_
	specifications		systems_frequency_response_analysis.htm
6	Controllability and	CO6	https://www.tutorialspoint.com/control_systems/control
	observability		systems_state_space_analysis.htm

### Text Book(s):

1. " Control Systems Engineering, I. J. Nagrath and M. Gopal, New Age International Publishers, 5th edition, 2007, Reprint 2012.

2. Control Systems by A. Anand Kumar, PHI Learning pvt. Ltd., second edition

#### Reference Book(s):

1. Norman S. Nise, "Control Systems Engineering", John Wiley & Sons PTE Ltd, 2013

2. 3. Modern Control Engineering, Katsuhiko Ogata, PEARSON, 1st Impression 2015.

### Online Resources:

1. http://www.aoengr.com/SampleBook.pdf

2. http://www.ent.mrt.ac.lk/~rohan/teaching/EN5001/Reading/DORFCH1.pdf

### Web Resources:

- 1. <u>https://nptel.ac.in/courses/107/106/107106081/</u>
- 2. https://www.tutorialspoint.com/control_systems/index.htm
- 3. <u>https://www.youtube.com/watch?v=XYbrgwKP_6k</u>

NARAYANA ENGINEERING COLLEGE:NELLORE												
20EE2007	POWER GENERATION & TRANSMISSION R2020											
II-B.Tech	H	Hours / We	ek	Total	Credit		Max M	arks				
	L	Т	Р	hrs	С	CIE SEE TOTAL						
II-Semester	3	0	0	48	3	40	60	100				
Pre-requisi	te: Basic concepts of electrical circuits and theorems											
Course Obj	jectives:											
1. 7	Γo unders	tand the S	tructure, e	essential co	omponents	and their l	layout in t	hermal power				
S	station											
2.	Го study v	arious asp	ects and i	ssues invo	lved in Nu	iclear pow	er generat	ion				
3. 7	Γo unders	tand the el	ectrical po	ower gener	ration fron	n renewabl	le energy s	sources as sun,				
v	wind and	ocean										
4.	Γo unders	tand the C	alculation	of differe	nt transmi	ssion line	parameter	s and their				
ι	ise.											
5. 7	Γo unders	stand the v	various ef	fects in tra	ansmissio	n system a	and Model	ling of				
t	ransmiss	ion line										
6.			0.1									
Course Out	tcomes: A	After succ	essful con	npletion of	of the cour	se, the stu	ident will	be able to:				
CO 1	Understa	nd the wor	king princ	ciple and o	peration of	f thermal p	power plan	nt.(BL=2)				
CO 2	Understa	nd the w	orking p	rinciple a	nd operat	ion of hy	ydro & I	Nuclear power				
	plant.(BL=2)											
CO 3	Understand the working principle and operation of various Renewable energy											
	sources.(BL=2)											
CO 4	Analyze and compute the transmission line parameters.(BL=3)											
CO 5	Analyze	the perform	mance of t	ransmissio	on Lines(B	L=3)						

	CO-PO Mapping													
СО		РО												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	2										2	2
CO2	2	2	1										1	2
CO3	2	3											3	2
CO4	3	2											3	2
CO5	2	3	1		1								1	3
					l: Lov	v, 2-M	lediun	1, 3- H	Iigh					

# **COURSE CONTENT**

MODULE –	1	THEF	RMAL PO	<b>)WER GE</b>	NERATING	SYSTEM	S	<b>8</b> h	irs
Importance of e	lectrical	l power	generati	on-Sources	s of energy-C	onventiona	al and	l non-con	ventional
sources-Block D	viagram	of The	rmal Pow	ver Station	(TPS) - Brief	Description	on of	TPS Cor	nponents:
Economizers, B	oilers,	Super	Heaters,	Turbines,	Condensers,	Chimney	and	Cooling	Towers-

Environmental Impact of Thermal power plants. At the end of the Module 1, students will be able to:

1. illustrate, the operation of thermal power plant (BL=2)

2. understand the concept and layout of thermal power plant (BL=2)

3.Explain the operation of each component in thermal power plant (BL=2)

MODULE -2	HYDRO & NUCLEAR POWER GENERATING SYSTEMS	8 hrs									
Hydro Power: Meri	ts and demerits of hydroelectric power plants, Selection	n of site. General									
arrangement of hydel	plant, Classification of the plants based on water flow regu	lation, water head									
and type of load the	plant has to supply. Water turbines - Pelton wheel, Fra	ancis, Kaplan and									
propeller turbines. Ur	propeller turbines. Underground, small hydro and pumped storage plants.										
Nuclear Power Plai	nts: Introduction, Merits and demerits, selection of site,	Nuclear reaction,									
Nuclear fuels, Nuclea	r plant and layout, Nuclear reactor and its control, Effects	of nuclear plants,									
Disposal of nuclear w	aste and effluent, shielding.										
At the end of the Mod	lule 2, students will be able to:										
<ol> <li>Understand the concept of layout and design aspects of hydro &amp;nuclear power plant. (BL=2)</li> </ol>											
2. Explain the requi	red flow of river water, cost of generation and number of un	nits									
generated in hyde	el power generation (BL=2)										
3.Illustrate, the oper	ration of nuclear power plant (BL=2)										
MODULE-3	RENEWABLE POWER GENERATING SYSTEMS	10 hrs									
Solar Power Gener	ation: Introduction, Solar Cell Fundamentals, Solar Cel	1 Characteristics,									
Solar Cell Classificat	ion, Maximizing the Solar PV Output and Load Matching.	Maximum Power									
Point Tracker, Solar F	PV Systems, Solar PV Applications.										
Wind Power Genera	tion: Introduction – Basic principles of wind energy conve	ersion power in the									
wind-Forces on blades and thrust on turbines											
Bio Energy: Introdu	<b>Bio Energy:</b> Introduction – Biomass conversion technologies – Bio gas generation – Factors										
affecting bio digestion	n or generation of gas.										
At the end of the Mod	lule 3, students will be able to:										
1. Explain the	working principle of PV cell and applications of solar energ	y. (BL=2)									
2.Understand	the electric power generation from renewable ene	ergy sources like									
Biomass,Ocear	n,Geothermal(BL=2)										
3.select best re	enewable energy power generating system (BL=2)										
MODULE-4	TRANSMISSION LINE PARAMETERS	10 hrs									
Types of Conductors,	Resistance For Solid Conductors – Skin Effect- Calculation	on of Inductance for									
Single Phase and T	hree Phase, Concept of GMR & GMD, Symmetrical	and Asymmetrical									
Conductor Configura	ation with and without Transposition. Numerical Prob	olems. Capacitance									
Calculations for Sym	metrical and Asymmetrical Single and Three Phase. Eff	ect of Ground on									
Capacitance. Numeric	cal Problems.										
At the end of the Mod	hule 4, students will be able to:										
1. Explain Ind	uctance & Capacitance for given transmission system( $BL=2$	2)									
2 Understand GMR & GMD for given transmission system(BL-2)											
2. Orderstand Given & Given to given transmission system( $DL-2$ ) 3. Identify the importance of transposition of asymmetrical transmission lines( $RI - 4$ )											
MODULE-5 PERFORMANCE OF TRANSMISSION LINE 12 hrs											
Insulators: Types of	Insulators String Efficiency and Methods for Improvement	ont and numerical									
problem	mountains, sumg Enterency and Methods for improveme	in, and numerical									
problem. Corona: Corona Phanomenon, Factors Affecting Corona, Critical Voltages and Power Less, Padia											
Interference and nume	rical problem	1 UWUI LUSS, Naulu									
Interference and nume	erical problem										

**Sag and Tension Calculations:** Sag and Tension Calculations with Equal and Unequal Heights of Towers, Effect of Wind and Ice on Weight of Conductor, Stringing Chart, Sag Template and numerical Problems. Classification of Transmission Lines - Short, Medium and Long Lines and Their Exact Equivalent Circuits- Nominal-T, Nominal- $\pi$ . Mathematical Solutions to Estimate Regulation and Efficiency of All Types of Lines. Long Transmission Line-Rigorous Solution, Evaluation of A,B,C,D Constants, Interpretation of the Long Line Equations

At the end of the Module 5, students will be able to:

- 1. Understand various factors in transmission system(BL=2)
- 2. Illustrate the factors affecting corona(BL=2)
- 3.Illustrate types of Insulators (BL=2)

Total hours: 48 hours

Content	beyond syllabus:							
<b>1.</b> B	etz criterion, wind energy A	Applications.						
<b>2.</b> U	nderground Cables							
Self-Stud	lv:							
Contents to promote self-Learning:								
SNO	Торіс	Reference						
1	Thermal power plant	https://swayam.gov.in/nd1_noc19_me63/preview						
2	Hydro power plant	https://nptel.ac.in/content/storage2/courses/105105110/p df/m5101.pdf						
3	Renewable energy sources	https://nptel.ac.in/content/storage2/courses/113104058/ mme_pdf/Lecture1.pdf						
4	Transmission Line Parameters	https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5 &lesson=49 https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5 &lesson=9						
5	Performance Of Transmission Line	https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=         5&lesson=51         https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=         5&lesson=6         https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=         7&lesson=13         https://www.voutube.com/watch?v=_iz8ZkiD7z8						
6	Modeling of	https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5 &lesson=50						

Trai	smission Lines	https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=7_
		$\underline{\& \text{lesson}=12}$
		https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=7_
		$\underline{\& \text{lesson}=14}$
		https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5
		<u>&amp;lesson=49</u>

## Text Book(s):

- 1. Power System Engineering by M.L.Soni, P.V.Gupta, U.S.Bhatnagar and A.Chakraborti, Dhanpat Rai & Co. Pvt. Ltd., 1999
- 2. Non Conventional Energy Sources by G.D. Rai, Khanna Publishers, 2000.

## **Reference Book(s):**

- 1. Principles of power systems by V.K.Mehta, Rohith Mehta S.Chand(P), 4th Edition
- 2. "Generation of Electrical Energy"- by B.R Gupta-S.Chand Publications,6th Edition(Reprint 2014)
- 3. Electrical Power Systems for Industrial Plants, Kamalesh Das, JAICO Publishing House, 2008.
- 4. Electrical power systems, C.L. Wadhwa, New Age International (P) Limited, 6th Edition, 2010, Reprint 2014.

# Online Resources/ Web References:

- 1. https://b-ok.asia/book/3429304/c1e86f
- 2 https://b-ok.asia/book/2729267/f90c96
- 3. http://www.acadmix.com/eBooks_Download

4.file:///C:/Users/DELL/Downloads/Electric%20Power%20Generation,%20Transmission,%20and

- %20Distribution%20%20(%20PDFDrive.com%20).pdf
- 5. http://nptel.ac.in/course
- 6. <u>https://freevideolectures.com/course/2342/energy-resources-and-technology</u>
- 7. https://nptel.ac.in/courses/108/102/108102047/
- 8.<u>https://nptel.ac.in/courses/108/107/108107112/</u>

	NA	RAY	YAN	A EN	GIN	EER	ING	COI	LE	GE:N	ELL	ORE	4	
20EE2503	A	NALO	G EL	ECTR	ONIC	CIRC	CUITS	AND	SIN	/ULA	ΓΙΟΝ	LAB	R202	)
II-B.Tech		H	ours / `	Week		Т	otal	Credi	t		Μ	lax Ma	rks	
	Ι		Т		Р	h	nrs	С		CIE		SEE	TO	ГAL
II-Semester	(	)	0		2	(* ) 	32	1		40		60	1	00
Pre-requisi	ite: B	Basic k	knowle	edge o	n amp	olifiers	s and	oscilla	tors.					
Course Ob	jectiv	es:												
1. Analyze amplifiers for frequency response														
2. Analyze feedback circuits, amplifier circuits and oscillator circuits														
3. Design and construct simple electronic circuits to accomplish a specific function, e.g., designing														
amplifiers														
Course Outcomes: After successful completion of the course, the student will be able to:														
CO 1	Measure various parameters of analog circuits and compare experimental results in the													
	laboratory with theoretical analysis. (BL-3)													
CO 2	Anal	yze n	egativ	e feed	back	amplif	ier ci	rcuits,	oscil	lators,	Powe	er amp	olifiers,	Tuned
	ampl	ifiers.	( <b>BL-4</b> )	)										
CO 3	Desig	gn ana	log ele	ctroni	c circu	its usir	ng disc	rete co	mpon	ents (B	SL-3)			
CO 4	Desig	gn RC	and	LC os	cillato	rs, Fee	edback	ampl	ifier f	for spe	cified	gain a	and mul	tistage
	ampl	ifiers f	for Lov	v, Mid	and h	igh fre	quenci	es. ( <b>B</b> ]	L-3)					
					C	CO-PO	) Map	ping						
CO			1		I	P	0			-	I	1	PS	<b>50</b>
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
<u>CO1</u>				1						1				
<u>CO2</u>	2	2			2						1	1		1
<u>CO3</u>	2	2	2	1	2						1	1	1	1
CO4			2		2			2 11	1		l	1	1	1
					1: Lov	w, 2-M	ledium	i, 3- Hi	gh					

COURSE CONTENT	CO					
Task-1 : COMMON EMITTER AMPLIFIER						
<b>Objective:</b> Design voltage divider based Common Emitter amplifier with discrete components and calculate the bandwidth of amplifier from its frequency response.	CO1					
Task-2 : COMMON COLLECTOR AMPLIFIER						
<b>Objective:</b> Design voltage divider based Common collector amplifier with discrete components and calculate the bandwidth of amplifier from its frequency response.	CO 1					
Task-3: RC COUPLED AMPLIFIER						
<b>Objective:</b> Design two stage RC coupled amplifier for given specifications. Determine Gain and Bandwidth from its frequency response curve.	CO 1					
Task-4: CE-CB CASCODE AMPLIFIER						
<b>Objective:</b> Design CE – CB Cascode amplifier. Determine Gain and Bandwidth from its frequency response curve.						
Task-5 : VOLTAGE SERIES FEEDBACK AMPLIFIER						
<b>Objective:</b> Design voltage series feedback amplifier for the given specifications. Determine the effect of feedback on the frequency response of a voltage series feedback amplifier.	CO 2					
Task-6 : VOLTAGE SHUNT FEEDBACK AMPLIFIER						
<b>Objective:</b> Design voltage shunt feedback amplifier for the given specifications. Determine the effect of feedback on the frequency response of a voltage series feedback amplifier	CO 2					
Task-7: CURRENT SHUNT FEEDBACK AMPLIFIER						
<b>Objective:</b> Design and simulate current shunt feedback amplifier for the given specifications using PSPICE /Multisim. Determine the effect of feedback on the frequency response of a current shunt feedback amplifier.	CO 2					

Task-8: CURRENT SERIES FEEDBACK AMPLIFIER								
<b>Objective:</b> Design and simulate current Series feedback for the given specifications using PSPICE /Multisim. Determine the effect of feedback on the frequency response of a current series feedback amplifier.	CO 2							
Task-9: RC PHASE SHIFT OSCILLATOR								
<b>Objective:</b> Design and simulate RC Phase shift oscillator for the given specification using PSPICE /Multisim. Determine the frequency of oscillation using simulation tool.	CO 4							
Task-10 : HARTLEY AND COLPITTS OSCILLATORS								
<b>Objective:</b> Design and simulate Hartley and Colpitts oscillators for the given specifications using PSPICE /Multisim. Determine the frequency of oscillation using simulation tool.	CO 4							
Task-11: CLASS-A POWER AMPLIFIER								
<b>Objective:</b> Design and simulate class A power amplifier using PSPICE /Multisim, find out the efficiency and Plot the output waveforms.	CO 2							
Task-12: CLASS-B PUSH PULL AMPLIFIER								
<b>Objective:</b> Design and simulate class B push-pull amplifier using PSPICE /Multisim, find out the efficiency and Plot the output waveforms.	CO 2							

Additional Experiments:								
Task-13: WEIN BRIDGE OSCILLATOR								
<b>Objective:</b> Design Wien bridge oscillator for the given specification. Determine the frequency of oscillation.	CO 3							
Task-14 : MONO STABLE MULTIVIBRATOR								
<b>Objective:</b> Design and simulate Mono Stable Multivibrator for the given specifications using PSPICE /Multisim.	CO 3							
Virtual Labs:								
1. <u>http://vlabs.iitkgp.ac.in/tcad/exp10/index.html#</u>								
2. <u>http://vlab.amrita.edu/index.php?sub=1&amp;brch=201</u>								

# Text Book(s):

- Introduction to PSPICE Using OrCAD for Circuits and Electronics by Rashid Muhammad H
- 2. PSPICE and MATLAB for electronics: An integrated approach by John o. Attia
- 3. Fundamentals of Electronic Circuit Design, Getting Started: MultiSim Textbook Edition byDavid J. Comer, Donald T. Comer.

# Reference Book(s):

- 1. A Guide to Circuit Simulation and Analysis Using PSPICE by Paul W. Tuinenga
- 2. Robert L. Boylestad and Louis Nashelsky, "Electronic Devices and Circuits Theory" Pearson/Prentice Hall, 9th Edition, 2006.
- 3. Sedra A.S. and K.C. Smith, "Micro Electronic Circuits", Oxford University Press, 5th Edition.

# Web References:

- 1. <u>https://nptel.ac.in/courses/122/106/122106025/</u>
- 2. https://www.tutorialspoint.com/semiconductor_devices/index.htm
- 3. https://www.allaboutcircuits.com/textbook/semiconductors/

NARAYANA ENGINEERING COLLEGE:NELLORE												
20EE2504	INC		ACHINES A	AND SYNC		MACHINES	Lab	R2020				
II-B.Tech	Н	lours / Wee	ek	Total	Credit		Max Mar	ks				
	L	T	Р	hrs	С	CIE	SEE	TOTAL				
II-Semester	0	0	3	30	1.5	40	60	100				
Pre-requisit	te: Nil											
Course Obj	ectives:											
1. To find the performance of induction motor by calculating the efficiency.												
2. To find direct and quadrature axis reactances of synchronous motor.												
3. To find v	3. To find voltage regulation by using various methods on synchronous machine											
4.To determ	nine 'v' ar	nd 'inverte	ed v' curve	s of synch	ironous mo	otor.						
5. To find	the effici	ency and	power fac	ctor from	circle diag	gram byco	nducting	no load and				
blocked rotor test on 3-phase induction motor.												
Course Out	comes: Aft	er success	ful comple	tion of the	e course, tr	ie student	will be abl	e to:				
CO 1	Find the	performan	ce characte	eristics of	the 3-phas	e induction	n motor.					
CO 2	Draw the	e direct and	d quadratu	re axis rea	ctance and	regulation	ı of					
	synchron	ous mach	ine.				<b>.</b>					
CO 3	To Know	the Equiv	valent Circ	uit Parame	eters of a S	Single Phas	e Inductio	n Motor				
CO 4	To know	how to dr	aw circle d	liagram ar	nd determin	ne the elec	trical para	meters by				
	using 3-p	bhase squi	rrel cage i	nduction 1	notor.							
CO 5	Know the	e voltage r	egulation of	of synchro	nous mach	nine by usi	ng Synchr	onous				
	Impedan	ce Method	l.									
CO 6	Know the	e voltage r	egulation of	of synchro	nous mach	ine by usi	ng M.M.F	.Method.				
CO 7	Know the	e voltage r	egulation of	of synchro	nous mach	nine by usi	ng ZPF.M	ethod.				
CO 8	Know the	e voltage r	egulation o	of synchro	nous mach	ine by usi	ng ASA.N	Iethod.				
CO 9	To know	how to dr	aw the V a	and $\Lambda$ curv	ves of sync	hronous m	otor					
CO 10	Know the	e separatio	n of losses	of the 1-	phase trans	former.						

## List of Experiments Prescribed and Conducted:

1. Conduct Brake test on 3-phase induction motor.

- 2. Determination of Xd and Xq of a Salient Pole Synchronous Machine
- 3. Equivalent Circuit of a Single Phase Induction Motor
- 4. Conduct no load and blocked rotor test on 3-phase squirrel cage induction motor
- 5. Regulation of a Three Phase Alternator by using Synchronous Impedance Method.
- 6. Regulation of a Three Phase Alternator by using M.M.F.Method.
- 7. Regulation of a Three Phase Alternator by using ZPF. Method.
- 8. Regulation of a Three Phase Alternator by using ASA. Method.

9. Conduct an experiment to draw V and  $\Lambda$  curves of synchronous motor at no load and load conditions.

10. Separation of Core Losses of a Single Phase Transformer.

Total hours: 30 hours

### Department of E.E.E :: 2020-2021

# NECR B.Tech 20 SEMESTER V



Subject	Category	Course Title	Cor	ntact v	Perio veek	ods per	Credits	Scheme of Examination Max. Marks			
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks	
20EE2008	PC	Digital Electronics and logic design	3	0	0	3	3	40	60	100	
20EE2009	PC	Power Distribution & Distributed Generation		0	0	3	3	40	60	100	
20EE2010	PC	Power Electronics		0	0	3	3	40	60	100	
_	OE	Open elective II	3	0	0	3	3	40	60	100	
20EE4001 -05	PE	Professional Elective I		0	0	3	3	40	60	100	
20EE2505	PC	Control Systems and Simulation Lab	0	0	3	3	1.5	40	60	100	
20EE2506	PC	Power Electronics & Simulation Lab	0	0	3	3	1.5	40	60	100	
20CD6003	SC	Career competency Development III	0	0	2	2	1	40	60	100	
20CC6003	SC	Value added course/Certificate Course III	0	1	0	1	1	40	60	100	
20EE7501	PR	Internship/skill development Training I	0	0	0	0	1.5	00	100	100	
20MC800 2-12	MC	Mandatory course III	2	0	0	2	0	00	00	00	
		Counseling/Mentoring	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme		During the Seme			ster	20 Points			
		Total	17	1	11	29	21.5	360	640	1000	

		NA	RAYA	NA E	ENGIN	EER	ING	COLI	LEGI	E:NEL	LOR	E		
20EE2008				Digit	tal Ele	ctron	ics &	Logic	: Desi	ign			R202	0
III D Tash	H	ours /	Week	2		Tot	tal	Cred	it	Max N	/larks			
пп-в.тесп	L		Т	P	)	hrs		С		CIE	S	EE	TOT	AL
I-Semester	3		0	0		48		3		40	60	)	100	
Pre-requi	site:	Basic	c know	vledge	e on nu	ımbei	r syste	em an	d alg	ebra.				
<b>Course O</b>	bject	ives:												
	-													
To study the	he ba	sic co	ncepts	s of n	umber	syste	ems ar	nd bin	ary c	odes.				
To minimize Boolean expressions using map and Q-M method.														
To design	To design combinational and sequential circuits.													
To familiarize Registers & counters using Flip-Flops.														
To unders	tand	the co	oncept	of n	nemor	y org	aniza	tion						
Course O	utcor	nes: A	After s	ucces	sful co	omple	etion of	of the	cours	se, the	stude	ent wil	l be ab	le to:
CO 1	Use	e numl	ber sys	stems,	binary	v code	es and	Boole	an al	gebra t	o imp	lemen	t digita	1
	circ	uits.	(BL-3)	)										
CO 2	App	oly mi	nimiza	ation t	echniq	ues o	n Boo	lean e	xpres	ssions.	(BL	3)		
CO 3	Des	sign co	ombina	ationa	l circui	its usi	ing log	gic gat	es. (I	3L-3)				
<b>CO 4</b>	Ana	alyze	synchr	onous	seque	ntial o	circuit	s. (BL	4)					
CO 5	Cla	ssify t	he me	morie	s & pro	ogran	ımabl	e logic	c devi	ices. (]	BL-2)	)		
					C	O-PO	) Map	ping			·			
						P	0						PS	50
СО	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO
~~~	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1										1	
<u>CO2</u>	3	3	3	1									1	1
<u>CO3</u>	3	3	3	1									1	
C04 C05	3		2	1									2	1
005	2	2			1.1.4		[]	2 11					1	1
					1: LOW	/, 2-IV	leaium	i, 3- Hi	gn					

COURSE CONTENT										
MODU	10 h									
Number	Systems	: Introduction, Number Systems, Number base conversions,	1's	and	2's					
Complen	Complements, BCD code, Excess -3 codes, Gray code, ASCII code, Error Detection and Correction									
Codes. B	Codes. Boolean Algebra: Basic definition, Basic theorems and properties, Boolean Functions, Canonical									
& Standa	& Standard forms, Logic gates, implementation of Boolean functions using logic gates									
At the en	d of the N	Indule 1, students will be able to:								
1. I	list numb	er systems. (BL-1)								
2. I	. Illustrate different code conversions. (BL-2)									
3. I	3. List Theorem's and properties of Boolean algebra (BL-1)									
4. E	4. Explain the functionality of logic gates(BL-2)									
MODU	10 h									
Introduct	ion, Karr	augh map simplification, Don't care conditions, Prime Implicants,	, Quine-	McClu	skey					
method Simplification, NAND & NOR Implementations, Two Level Implementations.										
At the end of the Module 2, students will be able to:										
1. A	. Apply basic laws and De Morgan's theorems to simplify Boolean expressions(BL-3)									
2. E	2. Explain map and Q-M method to minimize Boolean expressions. (BL-2)									
3. I	. Implement Boolean expression using universal gates. (BL-3)									

4. Implement Boolean expression using two level methods. (BL-3)

MODULE-3 COMBINATIONAL CIRCUITS 9 h Introduction, Design Procedure, Adders, Sub tractor, Binary Adder-Sub tractor, BCD Adder, Binary Multiplier, Magnitude Comparator, Multiplexers, De-multiplexers, Decoders, Encoders and Code Converters. At the end of the Module 3, students will be able to: 1. Design combinational logic circuits. (BL-3) 2. Implement Boolean expression using multiplexer. (BL-3) 3. Implement higher order MUX using lower order MUX.(BL-3) 4. Design code converters using gates. (BL-3) **SEQUENTIAL CIRCUITS MODULE-4** 10 h Introduction, Latches, Flip-flops, Master-slave flip flops, Edge-triggered flip-flops, Flip-Flop conversions, Design of Synchronous Sequential Circuits: State Equations, State Table, State reduction, State assignment, State diagram, Mealy and Moore machine models, Registers, Shift Registers, Counters: Synchronous counters, Asynchronous counters & other counters. At the end of the Module 4, students will be able to: 2. Describe behavior of latches & flip flops. (BL-2) 3. Analyze the flip-flop conversions(BL-3) 4. Analyze synchronous sequential circuits. (BL-3) 5. Explain the design procedure of sequential circuits(BL-2) 6. Design synchronous sequential circuits using state reduction & assignment process. (BL-3) **MODULE-5 MEMORY & PROGRAMMABLE LOGIC DEVICES** 9 h Introduction, Random Access Memory, Types of RAM, Memory decoding, Read Only Memory, Types of ROM, Flash memory, Programmable Logic Devices (PLDs): Basic concepts, Programmable Read Only Memory (PROM), Programmable Array Logic (PAL) and Programmable Logic Array(PLA). At the end of the Module 6, students will be able to: 1. Explain PROM, PAL and PLA. (BL-2) 2. Compare digital logic families. (BL-2) 3. Illustrate the characteristics of digital IC's . (BL-2) Total hours: 48 hours

Content beyond syllabus:

- 1. Representation of signed & unsigned binary numbers in digital computer
- 2. Binary subtraction operation using 1's and 2's complement methods in digital circuits

Self-Study:

Contents to promote self-Learning:

SNO	Module	Reference							
1	Number systems	https://www.geeksforgeeks.org/digital-electronics-logic-design- tutorials/							
2	Simplification of Boolean functions	https://www.electrical4u.com/simplifying-boolean-expression-using- k-map/ https://www.electronicshub.org/k-map-karnaugh-map							
3	Combinational circuits	https://www.allaboutcircuits.com/textbook/digital/							
4	Sequential Circuits	https://www.electronics-tutorials.ws/sequential/seq 1.html https://technobyte.org/counters-up-down-synchronous-asynchronous/							
5	Programmable logic devices	https://www.tutorialspoint.com/digital_circuits/digital_circuits_progra mmable_logic_devices.htm							

Text Book(s):

- 1. M. Morris Mano, M.D. Ciletti, "Digital Design", 5th edition, Pearson, 2018.
- 2 John F Wakely Digital Design Principles And Practices, Pearson Publication, Fourth edition
- 3 Anil K. Maini, "Digital Electronics: Principles, Devices and Applications", Willey, 2007

Reference Book(s):

- 1. Anand Kumar, Switching Theory and Logic Design, PHI,2008
- 2. John. M Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 3. R. P. Jain, "Modern Digital Electronics", 4th edition, McGraw Hill Education (India Private Limited), 2012.

Online Resources / Web References:

- 1. <u>https://nptel.ac.in/courses/108/105/108105113/</u> (IIT- Kharagpur digital Circuits)
- 2. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-004-computation-structures-spring-2017/c4/</u>
- <u>https://nptel.ac.in/courses/106/105/106105185/</u>(IIT- Kharagpur Switching Circuits and Logic Design)
- 4. <u>https://www.researchgate.net/publication/264005171_Digital_Electronics</u>
- 5. <u>https://www.academia.edu/37445384/Anil_K._Maini_Digital_Electronics_Principles_01.04.16.pdf</u>
- 6. <u>https://intuitionke.weebly.com/uploads/1/1/8/2/118271274/digital_principles_switching_theory.pdf</u>
- 7. https://www.javatpoint.com/digital-electronics

NARAYANA ENGINEERING COLLEGE:NELLORE											
20EE2009	POWER DISTRIBUTION & DISTRIBUTED GENERATION R2020										
III-B.Tech	Н	ours / Wee	ek	Total	Credit	Max Marks					
	L	Т	Р	hrs	C	C CIE PD&D		TOTAL			
I-Semester	3	0	0	48	3	40	40 60 10				
Pre-requisite: Nil											
Course Objectives:											
1.	To illustrate the Necessity of distributed generation										
2.	To Understand different renewable energy sources										
3.	To Understand the control aspects & Power quality issues of DG's										
4.	To understand the structure of Electrical distribution system and various factors										
5.	To understand the technical issues of substations such as location, ratings & Bus bar										
	arrangements										
Course Outcomes: After successful completion of the course, the student will be able to:											
CO 1	Compare the advantages & disadvantages of various distributed generation.										
CO 2	Describe various Distributed Generation systems, Micro-grid and storage devices										
CO 3	Illustrate the Economic and control aspects of DGs										
CO 4	Analyze the different load characteristics, distribution factors & Modelling of										
	distribution system.										
CO 5	Design of Distribution Feeders, Voltage Drop and power loss in D.C Distributors.										

CO-PO Mapping														
со	РО											PSO		
	PO	PO	РО	PO	PO	PO	PO	PO	РО	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	2								3	2
CO2	2	3	2	2	2								3	2
CO3	3	3	2	2	2								3	2
CO4	2	2	2	2	2								3	2
CO5	2	2	2	2	2								3	2
1: Low. 2-Medium. 3- High														

COURSE CONTENT

MODULE – 1

Need for Distribution Generation

Distributed generation, features and operations, advantages and disadvantages of DG, Comparison among the DG Technologies, Non conventional and renewable energy sources. Grid Interconnection-Standards of interconnection, Recent trends in power electronic DG interconnection.

At the end of the Module 1, students will be able to:

- 1. Understand the advantages & disadvantages of various DGs
- 2. Understand the Grid Interconnection
- 3. Identify the recent trends in power electronic DG interconnection

MODULE -2

Distribution Generation Resources

Introduction - Solar photovoltaic (PV) systems, Photovoltaic power characteristics – Wind energy conversion systems (WECS), power curve, power coefficient, wind energy distribution, Biomass Power, Fuel cells types, types of Tidal power generation schemes, mini and micro hydro power schemes - Storage devices: Batteries Storage, ultra-capacitors, flywheels Control of Micro grids.

At the end of the Module 2, students will be able to:

- 1. Understand the fundamentals of Various DG sources
- 2. Illustrate various types of storage devices related to DGs

MODULE-3

Economic and control aspects of DGs

Market facts, issues and challenges – Limitations of DGs – Voltage control techniques, Reactive power control, Harmonics, Power quality issues – Reliability of DG based systems – Steady state and Dynamic analysis.

At the end of the Module 3, students will be able to:

- 1. Understand various voltage & reactive power control techniques
- 2. Understand Power quality issues & Reliability of DG based systems

MODULE-4

INTRODUCTION TO ELECTRICAL DISTRIBUTION SYSTEMS

Introduction to Distribution Systems, Coincidence Factor, Contribution Factor, Relationship between the Load Factor and Loss Factor, Classification of Loads (Residential, Commercial, Agricultural and Industrial), Load Modeling and Characteristics

POWER FACTOR IMPROVEMENT: Causes of Low P.F - Methods of Improving P.F

At the end of the Module 4, students will be able to:

- 1. Understand the structure of Electrical Distribution System
- 2. Understand various factors associated with Distribution system
- 3. Understand the modeling of various types of Loads

MODULE-5

CLASSIFICATION & DESIGN FEATURES OF DISTRIBUTION SYSTEM

Classification of Distribution Systems - Comparison of DC & AC and Under-Ground & Over -Head Distribution Systems. Voltage Drop and power loss in D.C Distributors.

SUBSTATIONS AND BUSBAR ARRANGEMENT

Location of Substations, Classification of Substations, Single Bus Bar, Sectionalized Single Bus Bar, Main and Transfer Bus Bar, One and Half Breaker System.

At the end of the Module 5, students will be able to:

1. Compare DC vs AC and Under-Ground vs Over - Head Distribution Systems

- 2. Understand the benefits derived through Optimal Location of Substations
- 3. Understand Various Bus bar arrangements in Substations

Total hours: 48 hours

Term work:

Field work to EHV Substation, Wind & Solar Power plants/ Tutorials/ Quiz's
Content beyond syllabus:

1. Distribution Automation

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Distributed	CO1	https://www.dg.history.vt.edu/ch1/introduction.html
	Generation		
2	Wind Energy	CO2	https://www.dg.history.vt.edu/ch2/conversion.html
	Conversion		https://www.dg.history.vt.edu/ch2/storage.html
	system		
3	Reliability of DG	CO3	https://b-ok.asia/book/2941113/af547e
	system		
4	Distribution	CO4	https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5
	Systems		<u>&lesson=49</u>
			https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5
			<u>&lesson=9</u>
5	Classification &	CO5	https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5&less
	Design of DS		<u>on=51</u>
			https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5&less
			https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=7&less
			on=13
			https://www.youtube.com/watch?v=_iz8ZkjD7z8
			https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5&lesson=50
			https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=7&lesson=12 https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=7&lesson=14
			https://onlinecourses.nptel.ac.in/noc18_ee15/unit?unit=5&lesson=49

Text Book(s):

1. H. Lee Willis, Walter G. Scott , 'Distributed Power Generation – Planning and Evaluation', Marcel Decker Press, 2000.

2. G. Masters, Renewable and Efficient Electric Power Systems, IEEE- John Wiley and Sons Ltd. Publishers, 2nd Edition, 2013.

3. Electric Power Distribution Engineering, Turan Gonen, CRC Press, 3rd Edition, 2014.

4. Electric Power Distribution, A.S. Pabla, Tata Mc Graw Hill (India) Pvt. Ltd., 6th Edition, 2011.

Reference Book(s):

 "Fundamentals of renewable energy systems "by D.Mukherjee, S.Chakrabarti, New Age International Publishers.

2. Electrical Power Distribution Systems, V. Kamaraju, Jain Book Depot. 2012.

3. Electrical Power Systems for Industrial Plants, Kamalesh Das, JAICO Publishing House, 2008.

Online Resources:

1. <u>https://b-ok.asia/book/1117604/f01d10</u> 2 <u>https://b-ok.asia/book/2729267/f90c96</u>

Web Resources:

1. <u>https://nptel.ac.in/courses/108/102/108102047/</u>

2.<u>https://nptel.ac.in/courses/108/107/108107112/</u>

3. <u>https://www.youtube.com/watch?v=ptiaNGkuylY</u>

NARAYANA ENGINEERING COLLEGE:NELLORE													
20EE2010			POWER	ELECT	RONICS			R2020					
III-B.Tech	Η	ours / Wee	ek	Total	Credit		Max Mar	:ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
I-Semester	3	0	0	48	3	40	60	100					
Pre-requi	site: Nil												
Course O	bjectives:												
1.	To unde	rstand th	e various	applicat	ions of l	Power ele	ectronic d	levices for					
	conversion, control and conditioning of the electrical power and to get an												
	overview of different types of power semiconductor devices and their dynamic												
	character	istics.											
2.	To under	rstand the	operation	n, charact	teristics a	nd perform	mance pa	rameters of					
	controlled	d rectifiers											
3. '	To study th	ne operatio	on, switchi	ng technic	ues and ba	asics topol	ogies of D	C-DC					
	switching	regulators	5										
4. '	To learn th	e differen	t modulati	on techniq	ues of puls	se width m	nodulated i	nverters and					
1	to understa	and harmo	nic reducti	ion metho	ds.								
Course O	utcomes:	After suc	cessful co	mpletion	of the cou	rse, the st	udent will	l be able to:					
CO 1	Describe	e the oper	ation of p	ower semi	conductor	devices							
CO 2	Illustrat	e the con	struction	and opera	ation of sil	icon contr	olled recti	fier					
CO 3	Analyze	the vario	us uncont	rolled rec	tifiers and	l design sı	uitable filt	er circuits					
CO 4	Demonst	rate the o	peration of	f the DC-I	DC conver	ters and in	verters						
CO 5	Summa	rise the o	peration of	of AC cont	rollers.								

	CO-PO Mapping														
СО						P	0						PS	50	
	PO	PO P													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	3										3	2	
CO2	3	2	3										3	2	
CO3	3	2	3										3	2	
CO4	3	2	3										3	2	
CO5	3	2	3										3	2	
	1: Low, 2-Medium, 3- High														

MODULE – 1

Power Semiconductor Devices

Concept of power electronics, application of power electronics, advantages and disadvantages of power electronics converters, power diodes, power transistors, power MOSFETS, IGBT and GTO, uncontrolled converters.

At the end of the Module 1, students will be able to:

1. Discuss the concept, applications, advantages and disadvantages of power electronics

2. understand the switching phenomenon of various power semiconductor devices

MODULE -2

Silicon Controlled Rectifier:

Thyristors, brief description of members of Thyristor family with symbol, V-I characteristics and applications of SCR. Two transistor model of SCR, SCR turn on methods, switching characteristics, ratings, gate triggering circuits, different commutation techniques of SCR.

At the end of the Module 2, students will be able to:

- 1. understand the switching phenomenon of various members of thyristor family
- 2. Examine the characteristics, turn on & off methods, ratings & protection of SCR

MODULE-3

Phase controlled converters:

Principle of operation of single phase and three phase half wave, half controlled, full controlled converters with R, R-L and RLE loads, effects of freewheeling diodes and source inductance on the performance of converters.

At the end of the Module 3, students will be able to:

1. Understand the operation of single phase and three phase converters with all possible loads

1. Examine the behaviour of dual converter

3. Analyze the performance parameters of converters

MODULE-4

DC-DC converters and Inverters

Principle of operation, control strategies, step down & step up choppers, types of choppers circuits based on quadrant of operation & commutation technique, Definition, classification of inverters based on nature of input source, wave shape of output voltage, Principle of operation of single phase and three phase bridge inverter with R and R-L loads,

At the end of the Module 4, students will be able to:

- 1. Explain the control strategies and operation of different choppers
- 2. Describe the performance of all types choppers.
- 3. Analyze the performance parameters of inverters.

MODULE-5

AC controllers:

Principle of on-off and phase control, single phase and three phase AC Voltage controllers with R and R-L loads. Principle of operation of cycloconverters, single phase to single phase step up and step down cycloconverters.

At the end of the Module 6, students will be able to:

- 1. Differentiate between AC Voltage controllers and cycloconverters
- 2. Explain the operation of AC Voltage controllers and cycloconverters

Total hours: 48 hours

Term work:

Content beyond syllabus:

1. Three phase cycloconverters

Self-Study:

Contents to promote self-Learning:

SN O	Торіс	CO	Reference
1	IGBT	CO1	https://www.youtube.com/watch?v=ekSbhm4l0Go
2	Commutation techniques of SCR	CO2	https://www.youtube.com/watch?v=mf-97ZXrOz0 https://www.youtube.com/watch?v=h7cu27etdmg https://www.youtube.com/watch?v=WX5G0RHozAs https://www.youtube.com/watch?v=d4sbVc-r7I4
3	Three phase converters	CO3	https://www.youtube.com/watch?v=VYmd3KKfCQQ
4	Switching mode regulators	CO4	https://www.youtube.com/watch?v=Q7cTuZIH8IA https://www.youtube.com/watch?v=I0ZbC7uCe9A https://www.youtube.com/watch?v=YiYQjdARZ7I
5	Resonant Pulse inverters	CO5	https://www.youtube.com/watch?v=AISpcLLiOPA

- 1. Power Electronics, M.D. Singh and K.B. Khanchandani, Tata Mc Graw Hill. 2007
- 2. Power Electronics, M.H. Rashid, PHI, 3rd Edition
- 4. Power Electronics, P.S. Bhimra, Khanna Publishers, 3rd Edition.

Reference Book(s):

- 1. Modern Power Electronics & AC drives, B.K. Bose, Prentice Hall
- 2. Power Electronics, V.R. Moorthi, Oxford, 2005
- 3. Power Electronics, Mohan, Undeland & Riobbins, Wiley India
- 4. Element of power Electronics, Phillip T Krein, Oxford, 2007

Online Resources:

1.

https://books.google.co.in/books?id=0_D6gfUHjcEC&printsec=frontcover#v=onepage&q&f=false 2. https://nptel.ac.in/courses/108/105/108105066/

Web Resources:

1.<u>https://www.youtube.com/watch?v=ZbvWe9xBu3Q&list=PLp6ek2hDcoND7i5-</u> DAD9mPmYF1Wg6ROdO

2. https://www.youtube.com/watch?v=1Auay7ja2oY&list=PLA07ACBDE053A8229

NARAYANA ENGINEERING COLLEGE:NELLORE													
20EE2505			Control	systems & S	imulation La	b		R2020					
III-B.Tech	Ho	ours / We	ek	Total hrs	Credit		Max Mar	⁻ ks					
	L	Т	Р		С	CIE	CSS	TOTAL					
I-Semester	0	0	3	30	1.5	40	60	100					
Pre-requisite:	Nil												
Course Object	ives:												
1. To provide practical knowledge for Time response of second order system 2. Determine of transfer functions of various systems and control of it by different													
2. Determine of transfer functions of various systems and control of it by different													
Methodologies													
3. The characteristics of Magnetic Amplifier, servo mechanisms which are helpful in automatic													
control systems													
4. Determine the stability analysis of different system by using PSPICE and MATLAB													
5. To stu	dy the clo	sed loop	performa /	nce for the g	given plant us	Sing P, PD, I	PI, PID Cont	rollers.					
6. The d	esign of co	ontrollers	compens	ators to ach	leve desired	specificatio	ons.						
<u> </u>	Dotormi	na tha tra	ncfor fun	stions of vari	ous system								
	Determi	ne the tra	Inster Tune		ous system								
CO 2	Analyse	the know	ledge ab	out the effe	ct of poles a	ind zeros l	ocation on	transient and					
	steady s	tate beha	viour of	second orde	er systems ar	id can imp	lement the	m to practical					
60.3	systems												
	iviodel ti	ne system	s and able	e to design ti	ne controller	s and comp	ensators						
CO 4	Get the	Practical	Knowled	ge for Time	response of	second or	der system	S					
CO 5	Determine the performance and time domain specifications of first and second order												
	systems												
CO 6	Determi	ne the stat	oility anal	ysis of differ	ent system b	y using PSI	PICE and M	IATLAB					

CO-PO Mapping															
СО						Р	0							PSO	
	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО	PSO	PSO 2	
	<u>1</u> 2 3 4 5 6 7 8 9 10 11 12 1														
CO1	3	2	2						2	2					
CO2	3	2	2						2	2					
CO3		2		2					2	2					
CO4	2			2	1				2	2		1			
CO5			2						2	2				2	
CO6	O6 2 2 2 2														
					1: L	ow, 2-	Mediu	m, 3- I	ligh						

List of Experiments

Any Ten of the following experiments are to be conducted:

- 1. Time Response of Second Order System
- 2. Characteristics of Synchro pair
- 3. Characteristics of AC Servo Motor

- 4. Characteristics of DC Servo Motor
- 5. Transfer Function of DC Machine
- 6. Characteristics of Magnetic Amplifiers
- 7. Lag and Lead Compensation Magnitude and Phase Plot
- 8. Effect of P, PD, PI, PID Controller on a Second Order System.
- 9. Temperature Controller Using PID
- Programmable Logic Controller Study and Verification of Truth Tables of Logic Gates, Simple Boolean Expressions and Application of Speed Control of Motor.
- 11. Characteristics of Magnetic Amplifier
- 12. Simulation of transfer functions using operational amplifier

Any two simulation experiments are to be conducted:

- 1. PSPICE Simulation of Op-Amp Based Integrator and Differentiator Circuits.
- 2. Linear System Analysis (Time Domain Analysis, Error Analysis) Using MATLAB.
- Stability Analysis (Bode, Root Locus, Nyquist) of Linear Time Invariant System Using MATLAB
- 4. State Space Model for Classical Transfer Function Using MATLAB Verification.

Total hours: 36hours Term work: Lab seminars Self-Study: Contents to promote self-Learning: **SNO** Topic СО Reference Time response of https://www.tutorialspoint.com/control systems/control 1 CO1 second order system systems time response analysis.htm 2 Synchro Pair CO2 https://circuitglobe.com/synchro.html AC & DC Servo 3 CO3 https://circuitglobe.com/servo-motor.html Motor Transfer function of 4 CO4 https://www.eeeguide.com/transfer-function-of-a-field-DC Machine controlled-dc-motor/

5	Magnetic amplifiers CO5		http://www.tubebooks.org/Books/mag_amp.pdf	

1. Simulation of Electrical and electronics Circuits using PSPICE - by M.H Rashid, M/S PHI Publications.

- 2. PSPICE A/D user's manual --Microsim USA
- 3. MATLAB and its Tool Books yser's manual and Mathworks, USA

Reference Book(s):

1.. PAPICE reference guide -Microsim, USA

Online Resources:

1.<u>http://www.acadmix.com/eBooks_Download</u>

2.

Web Resources:

1. https://webstor.srmist.edu.in/web_assets/srm_mainsite/files/2017/Control-lab-manual-final.pdf

NARAYANA ENGINEERING COLLEGE:NELLORE													
20EE2506			Power	Electron	ics Lab			R2020					
III-B.Tech	ŀ	lours / Wee	k	Total	Credit		Max Mai	rks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
I-Semester	0	0	3	30	1.5	40	60	100					
Pre-requis	ite: Basi	c of Electri	cal circuit										
Course Of	ojectives:												
The objecti	ives are to	study:	. .										
1. The cl	haracteris	tics of pov	ver electr	onic devi	ces with g	ate firing	circuits						
2. Vario	2. Various forced commutation techniques												
3. The o	peration o	of single-pl	hase volta	ige contro	oller, conv	erters and	l Inverter	S					
circuits w	ith R and	RL loads		_									
4. Analy	ze the TPS	S7A4901, 1	TPS7A830	00 and TP	S54160 b	uck regula	ators						
List of Ex	kperimen	ts											
PART A													
1. Single P	hase AC V	Voltage Con	ntroller w	vith R and	RL Loads								
2. DC Jone	s Chopper	r with R ar	nd RL Loa	ds									
3. Forced	Commuta	tion Circui	its (Class	A, Class B	, Class C, C	lass D and	d Class E)						
4. Buck Co	onvertor		C C		, ,		,						
5. Single P	hase Para	allel Invert	er with R	and RL L	oads								
6. Single P	hase Serie	es Inverter	r with R a	nd RL Loa	ads								
7 Single P	hase Dual	l Converte	r with RL	Loads									
8 Illumin	ation cont	rol / Fan c	ontrolus	ing TRIA(• •								
NI Multis	im Simul	ation Fyn	orimonte										
1 Simulat	ion of Sin	alo Dhaco I	HalfCont	collod Cor	wortor								
2 Simulat	ion of Sin	gle I llase I glo Dhaco I	Fully Cont	trollod Co	nvortor								
2. Simulat	ion of DW	M Invorto	runy Com	li oneu Co									
5. Simulat	ion of Sin	m mverter glo Dhaco	I AC Voltag	o Controll	or								
4. Sillulat	1011 01 5111	gle Fliase I	AC VOILAS	e control	lei								
At the ord	of the cour	see student	م ستال الم ما	bla ta									
1 The stu	dont will a	se, student	s will be a	ole to	wor comic	onductor (davicas &	P Spico					
I. The stud	uent win a	lialyze the	cilal acteri	sucs of pe	ower senne		devices a	r spice					
2 To Perfo	rm Lahora	tory Fyneri	ments nra	ctically									
3 To carry	out labora	tory experi	iments on	simulation	& Kits								
	out labora	tory experi		Simulation	a mito.								
1 ext Book	S	مام : ما المربية ما				fan Cinania							
I. Munami	mau H. Kas	silla, Introd rd Edition	auction to	rspice us	ing UrCAD	for circuit	s and Elec	ctronics,					
Pearson EC	iucation, 5	i u Euluoii, 	2005. mia Cinau	tahu M		M.C. Char	doulrou	V.					
2. SIIIIUIAU				ILS DY M	. D. Paul ,	m. C. Châr	iuui Kar,	v.					
катаnara	iyanan , V	. г. кangan	atnan.										
L													
			C	O-PO Map	oing								
60				<u>PO</u>	-			DSO.					

со						Р	0						PS	0
	РО	РО	РО	РО	РО	РО	РО	РО	PO	PO	РО	РО	PSO1	PSO
	1	2	3	4	5	6	7	8	9	10	11	12		2
CO1	3	2			2				2	2			3	2
CO2	2	3			2				2	2			3	2
CO3	3	3			2				2	2			3	2
	1: Low, 2-Medium, 3- High													

Department of E.E.E :: 2020-2021

NECR B.Tech 20 <u>SEMESTER VI</u>

Subject	Category	Course Title	Con	itact w	Perio zeek	ds per	Credits	Scheme of Examination Max. Marks			
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks	
20EE2011	PC	Electrical Measurements & Instrumentation	2	0	0	2	2	40	60	100	
20EE2012	PC	Modern Power System Analysis	3	0	0	3	3	40	60	100	
20EE2013	PC	Switch Gear and Protection	3	0	0	3	3	40	60	100	
-	OE	Open Elective III	3	0	3	3	3	40	60	100	
20EE4006 -10	PE	Professional Elective II	3	0	0	3	3	40	60	100	
20EE4011 -15	PE	Professional elective III	3	0	0	3	3	40	60	100	
20EE2507	PC	Measurements & Instrumentation Lab	0	0	2	2	1	40	60	100	
20EE2508	PC	Power Systems Lab	0	0	3	3	1.5	40	60	100	
20CD6004	SC	Career competency Development IV	0	0	2	2	1	40	60	100	
20CC6004	SC	Value added course/Certificate course IV	0	1	0	1	1	40	60	100	
		Counseling/Mentorin g	0	0	1	1	0				
		Sports/Hobby Clubs/Activities	0	0	2	2	0				
		Activity Point Programme		Du	ring	the Seme	ster		20 Points	·	
		Total	17	1	13	28	21.5	400	600	1000	

NARAYANA ENGINEERING COLLEGE:NELLORE													
20EE2011		Electric	al Measur	ements an	d Instrume	entation		R2020					
III-B.Tech	Н	lours / Wee	k	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
II-Semester	2	0	0	32	2	40	60	100					
Pre-requis	ite: Nil												
Course Obj	Course Objectives: 1. The basic principles of different types of electrical instruments for the Measurement of												
1. The	1. The basic principles of different types of electrical instruments for the Measurement of												
voltage, cur	current, power factor, power and energy.												
2. The	measurem	ent of R, L,	and C para	meters usir	ng bridge ci	rcuits.							
3.The	principles of	of magnetic	measurem	nents.									
4.The	use of Curr	rent Transfo	ormers, Pot	ential Tran	sformers, a	IndPotentio	ometers.						
Course Out	comes: Aft	ter success	ful comple	etion of the	e course, th	ne student	will be abl	e to:					
CO 1	Describe th	ne concepts	and princi	ples of Me	asuring Inst	truments to	o measure v	oltage and					
	current.												
CO 2	Analyze th	e working p	orinciples o	f single an	d three pha	se wattme	ters & ener	gy meter to					
	measure p	ower and e	nergy in cir	cuits.									
CO 3	Demonstra	ate the con	cepts and	principles	of AC and I	DC bridges	to evaluat	e resistance,					
	inductance	and Capac	itance for A	AC and DC (Circuits.								
CO 4	Demonstra	ate the ope	rating prin	ciples of in	strument ti	ransformer	s and pote	ntiometer to					
	measure u	nknown vol	tage, Curre	ent & Resist	tance in ciro	cuits.							
CO 5	Identify t	the physical	variables t	to describe	operating p	principle of	the transd	ucers.					

	CO-PO Mapping														
СО						Р	0						PS	50	
	PO	PO PO<													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2										З	2	
CO2	3	3	2										3	2	
CO3	3	3	2										3	2	
CO4	3	3	2										3	2	
CO5	3	3	2										3	2	
	1: Low, 2-Medium, 3- High														

MODULE – 1

Measurement of voltage & current

General principles of measurements —essentials of indicating instruments - deflecting, damping, controlling torques-Ammeters and voltmeters - moving coil, moving iron, constructional details, operation, Expression for deflecting & controlling torques and errors compensations- principles shunts and multipliers – extension of range.

At the end of the Module 1, students will be able to:

1. Understand the basic principles of different types of electrical instruments for the Measurement of voltage, current

2. Use the MI & MC instruments

3. Extend the range of ammeters and voltmeters

4. Understand the working and applications of cathode ray oscilloscope.

MODULE -2

Measurement of Power, Energy, Power factor

power meters :Dynamometer type wattmeter –1-phase and 3-phase - LPF and UPF- Double Element and Three Element wattmeter's.

Energy meters : Single Phase Induction Type Energy Meter – Driving and Braking Torques – Errors and Compensations. Three Phase Energy Meter-TOD meter

P.F. Meters : Dynamometer and Moving Iron Type – 1-ph and 3-ph Meters.

At the end of the Module 2, students will be able to:

- 1. Illustrate the working principle of wattmeter, energy meter
- 2. Measure active power, reactive power, power factor, and energy in both 1-phase and 3-phase circuits
- 3. To have an adequate knowledge in the measurement techniques for power ,energy

MODULE-3

Measurement of Resistance, Inductance and Capacitance

Measurement of Resistance: Kelvin's double bridge -Whetstone's bridge, sensitivity, limitations- loss of charge method -Megger method.

Measurement of Inductance and Capacitance: Maxwell's inductance and capacitance bridge-Hay's bridge-Anderson's bridge- Desauty's bridge -Schering bridge-weins bridge- Problems

At the end of the Module 3, students will be able to:

1. Measurement of R, L, and C parameters using bridge circuits

2. able to measure resistance ,inductance & capacitance using appropriate bridges

MODULE-4

Extension of Instrument Ranges

Instrument transformers: Current Transformers and Potential Transformers – Ratio and Phase Angle Errors – Methods for Reduction of Errors-Design Considerations.

Potentiometers: Principle and Operation of D.C. Crompton^{*}s Potentiometer – Standardization – Measurement of unknown Resistance, Current, Voltage -AC Potentiometers: Polar and Coordinate types-Standardization – Applications.

At the end of the Module 4, students will be able to:

- 1. Use CTs and PTs for measurement of very large currents and high voltages
- 2. Ability to measure current and voltage using potentiometric method.
- 3. Analyse the concept of extension of range of meters used in electrical measurements.

MODULE-5

TRANSDUCERS

Definition and classification - common transducers for measurement of displacement, velocity, flow, liquid level, force, pressure, strain and temperature -LVDT, electromagnetic and ultrasonic flow meters, piezoelectric force transducer, load cell, strain gauge- bridge configuration for four strain gauges, RTD, Thermistors,thermocouple,

Need for instrumentation system, data acquisition system.

At the end of the Module 6, students will be able to:

- 1. Identify the transducers for physical variables and to describe operating principle
- 2. understand the various electrical measuring instruments

Total hours: 32 hours

Term work:

Term work shall consist of report on substation where various measuring instruments can be observed , ,seminars and practical session based on syllabus. Content beyond syllabus:

1. Miscellaneous Measuring Instruments: Maximum demand indicators

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	РММС	CO1	https://www.tutorialspoint.com/electronic_measuring_instr
	INSTRUMENT		uments/electronic_measuring_instruments_dc_voltmeters.h
			<u>tm</u>
2	ENERGY METER	CO2	https://circuitglobe.com/energy-meter.html
3	DC & AC BRIDGES	CO3	https://www.tutorialspoint.com/electronic_measuring_instr
			uments/electronic_measuring_instruments_dc_bridges.htm
1	POTENTIOMETER	CO4	https://www.youtube.com/watch?v=i05A2sfO7Xc&list=PL22
			7ZNwByTITGq1atJsFst_qnEptI870O&index=33
5	TRANSDUCERS	CO5	https://www.tutorialspoint.com/electronic_measuring_instr
			uments/electronic_measuring_instruments_transducers.ht
			<u>m</u>

Text Book(s):

1. Electrical & Electronic Measurements and Instrumentation by AK Sawhney, Dhanpat Rai & Sons Digital Instrumentation, A.J. Bouwens, Tata Mc-Graw hill.

2. J. B. Gupta - A course in Electronic and Electrical measurements and Instrumentation, S. K. Kataria Publication

3. Electrical Measurements & Measuring Instruments by M.L.Anand (Author)

Reference Book(s):

1. E. W. Golding - Electrical & Electronic Measurements & Instrumentation

2. A. D. Helfrick and W.D. Cooper- Modern Electronic Instrumentation and Meas. Techniques

Online Resources:

1. <u>https://b-ok.asia/book/2563619/2f98e0</u>

2.<u>https://civildatas.com/download/electronic-and-electrical-measuring-instruments-machines-by-</u>bakshi

3.<u>https://books.google.co.in/books?id=Q6uBCgAAQBAJ&pg=PA9&lpg=PA9&dq=measurements+for+tod</u> ay<u>&source=bl&ots=oXNqMKSLxk&sig=ACfU3U2cEvMiC6pSV205CRFO3WM8vC1HMQ&hl=en&sa=X&ved</u> =2ahUKEwjNq6Lsx4_qAhXlQ3wKHaM4DZ0Q6AEwD3oECAgQAQ#v=onepage&q=measurements%20for% 20todav&f=false

Web Resources:

1. https://nptel.ac.in/courses/108/105/108105153/

2. http://www.instrumentationtoday.com/

3.<u>https://www.youtube.com/watch?v=n1MinLtvnPY&list=PL227ZNwByTITGq1atJsFst_qnEptI8700&inde</u>

x=2

	1	VARAYA	NA ENGI	NEERING	COLLEG	E:NELLO	RE							
20EE2012		N	IODERN PO	WER SYST	EM ANALYS	SIS		R2020						
III-B.Tech	Н	ours / Wee	ek	Total	Credit		Max Mar	ks						
	L	Т	Р	hrs	С	CIE	SEE	TOTAL						
II-Semester	3	0	0	48	3	40	40 60 100							
Pre-requisi	Pre-requisite: Nil													
Course Objectives:														
1. Discuss the power system network matrices, formation of Y_{Bus} and Z_{Bus}														
2.	2. Calculation of power flow in a power system network using various techniques													
3.	Discuss the Short Circuit Analysis													
4.	Examine t	he Power s	ystem stab	ility										
Course Out	comes: Af	ter success	sful compl	etion of th	e course, t	he student	will be abl	e to:						
CO 1	Discuss th	ne Represe	entation of	power sys	tem matrio	es with fo	rmation of	Y _{BUS} .						
CO 2	Describe	the Repre	sentation o	of power sy	/stem matr	ices with f	ormation o	of Z _{BUS} .						
CO 3	Apply the	concepts of	of algorithm	for the give	ven power s	ystem netw	vork.							
CO 4	Analyse t	he symmetr	rical faults a	and unsym	metrical fau	lts of a pov	ver system	network.						
CO 5	Develop	the steady S	State, Dyna	mic and Tr	ansient Stal	oilities for a	a power sys	tem.						

					(CO-PO	Марр	oing						
СО						Ρ	0						PS	50
	PO	PO PSO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	3	3	3								3	3
CO2	3	3	3	3	3								3	3
CO3	3	3	3	3	3								3	2
CO4	3	3	3	3	3								3	2
CO5	3	3	3	3	3								3	2
	1: Low. 2-Medium. 3- High													

MODULE – 1

P.U SYSTEM AND Y_{bus} FORMATION

Per-Unit representation of Power system elements - Per-Unit equivalent reactance network of a three phase Power System - Graph Theory: Definitions, Bus Incidence Matrix, YBus formation by Direct and Singular Transformation Methods, Numerical Problems.

At the end of the Module 1, students will be able to:

- 1. Discuss the Matrices, construction of primitive network element
- 2. Formation of Y_{BUS} by using different methods
- 3. Discuss the Per Unit Quantities

MODULE -2

Formation of Z_{Bus} : Partial network, Algorithm for the Modification of Z_{Bus} Matrix for addition element for the following cases: Addition of element from a new bus to reference, Addition of element from a new bus to an old bus, Addition of element between an old bus to reference and Addition of element between two old busses - Modification of Z_{Bus} for the changes in network (Problems)

At the end of the Module 2, students will be able to:

- 1. Formation of Z_{BUS} and Algorithm for the Modification of Z_{BUS} .
- 2. Explain the concept of Zbus.
- 3. Understand the Modification of Z_{Bus} for the changes in network

MODULE-3

POWER FLOW ANALYSIS

Static load flow equations – Load flow solutions using Gauss Seidel Method: Algorithm and Flowchart. Acceleration Factor, Load flow Solution for Simple Power Systems (Max. 3-Buses): Newton Raphson Method in Polar Co-Ordinates Form: Load Flow Solution- Jacobian Elements, Algorithm and Flowchart. Decoupled and Fast Decoupled Methods.- Comparison of Different Methods

At the end of the Module 3, students will be able to:

- 1. Describe the Load Flow studies by using different methods
- 2. Discuss the Comparison of Different Methods

MODULE-4

SHORT CIRCUIT ANALYSIS

Short Circuit Current and MVA Calculations, Fault levels, Application of Series Reactors. Symmetrical Component Theory: Positive, Negative and Zero sequence components, Positive, Negative and Zero sequence Networks. Symmetrical Fault Analysis: LLLG faults with and without fault impedance, Unsymmetrical Fault Analysis: LG, LL and LLG faults with and without fault impedance, Numerical Problems.

At the end of the Module 4, students will be able to:

- 1. Describe e the Equivalent Reactance Network of a Three Phase Power System.
- 2. Listen the Symmetrical fault Analysis and Unsymmetrical Fault Analysis.

MODULE-5

STABILITY ANALYSIS

Elementary concepts of Steady State, Dynamic and Transient Stabilities. Derivation of Swing Equation, Power Angle Curve and Determination of Steady State Stability. Determination of Transient Stability by Equal Area Criterion, Application of Equal Area Criterion, Critical Clearing Angle Calculation. Numerical methods for solution of swing equation - Methods to improve Stability - Application of Auto Reclosing and Fast Operating Circuit Breakers.

At the end of the Module 5, students will be able to:

- 1. Describe the Power system stabilities
- 2. Examine the Swing Equation
- 3. Distinguish the Equal Area Criterion

Total hours: 48 hours

Term work:

Field work of load flow in power system

Content beyond syllabus:

1. knowledge of Multi machine stability in power system.

Self-Study:

Contents to promote self-Learning:

SN	D Topic	СО	Reference
1	Representation of	CO1	http://175.101.102.82/moodle/mod/folder/view.php?id=1
			<u>7046</u>

	power System Network Matrices		
2	Load Flow Studies	CO2	http://175.101.102.82/moodle/mod/folder/view.php?id=1 7046
3	Newton Raphson Method	CO3	http://175.101.102.82/moodle/mod/folder/view.php?id=1 7046
4	Short Circuit current and MVA Calculations	CO4	http://175.101.102.82/moodle/mod/folder/view.php?id=1 7046
5	Power system Stabilities	CO5	http://175.101.102.82/moodle/mod/folder/view.php?id=1 7046

1. Elements of power systems analysis by W D Stevenson Jr Fourth Edition TMH International students edition

- 2. Modern power system analysis by D.P.Kothari and I.J.Nagrath , TMH 3rd Edition
- 3. Electrical power systems by C.L. Wadhwa , New age International (P) Limited
- 4. Power system Analysis by TK Nagasarkar and Sukhija , Oxford press

Reference Book(s):

- 1. Power System Stability by Kimbark vol I willey Publications, Inc
- 2. Power system Stability and control by P. Kundur , TMH
- 3. A.R. Bergen and V.vittal; "Power system Analysis", Pearsib Publication

Online Resources: http://175.101.102.82/moodle/course/view.php?id=693

- 1.<u>http://www.acadmix.com/eBooks_Download</u>
- 2. https://nptel.ac.in/courses/108105067/
- 3.<u>https://nptel.ac.in/course.html</u>

Web Resources: http://175.101.102.82/moodle/course/view.php?id=693

1. https://lecturenotes.in/subject/482/power-system-analysis-psa/note

- 2.<u>https://www.youtube.com/watch?v=j44kQiphUB4&list=PL1XaeVNXKsvwkfUAGQiUuqWBswJ4VM3Ed</u>
- 3.<u>https://www.youtube.com/watch?v=-bX0k5DIwek&list=PLgzsL8klq6DJv0G1l7ji4Ol8BTXgEADfP</u>
- 4.<u>https://www.youtube.com/watch?v=tb3gCr9m0LU&list=PLtcRcIUOKppXWUMEVXGwwULXgzEBygOK-</u>
- 5.<u>https://www.youtube.com/watch?v=fBm1dr_gRBk&list=PL36A60B630E8C7B56</u>
- 6. https://www.youtube.com/watch?v=NfnrupJ0BwY&list=PLfDaOYdi9aZyO2oYhr7G9DYMhoFmqS4A1

	ſ	VARAYA	NA ENGI	NEERING	COLLEG	E:NELLO	RE						
20EE2013			Switch	Gear & Pro	tection			R2020					
III-B.Tech	Н	ours / Wee	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	PSP	TOTAL					
II-Semester	3	0	0	48	3	40 60 100							
Pre-requisite: Nil													
Course Objectives:													
1. To Learn in detail about Switch gear Protective equipments													
2.	To Learn about the technical aspects involved in the operation of Circuit Breakers												
3.	To Learn about Basic Requirements of Protective Relays												
4.	To Learn o	different ty	pes Relay	s & Applica	tions								
Course Out	comes: Af	ter success	ful compl	etion of th	e course, tl	ne student	will be abl	e to:					
CO 1	Demonst	r <mark>ate</mark> the op	eration of o	different ty	pes of Circu	it Breakers							
CO 2	Describe	the operat	ion & app	lication of	various ty	pes of pro	tective rela	ays.					
CO 3	Compare	the differe	nt types of	comparato	rs.								
CO 4	Analyze t	he various	protectio	n schemes	s of variou	s power sy	/stem com	ponents like					
	alternato	ors, transfo	ormers and	d bus-bars									
CO 5	Illustrate	the variou	s method	s of over v	oltage pro	tection in	power sys	tems					

					(CO-PO	Mapp	oing						
СО						Р	0						PS	50
	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2											3	2
CO2	3	2											3	2
CO3	3	2											3	2
CO4	3	2											3	2
CO5	3	2											3	2
	1: Low, 2-Medium, 3- High													

MODULE – 1

CIRCUIT BREAKERS: Circuit Breakers: Arc Phenomenon, Methods of Arc Interruption, Restriking and Recovery Voltage - Restriking Phenomenon, RRRV, Current Chopping and Resistance Switching. Constructional features & Principle operation of Minimum Oil Circuit Breakers, Air Blast Circuit Breakers, Vacuum and SF6 Circuit Breakers, Ratings of CB's, Auto Reclosure's.

At the end of the Module 1, students will be able to:

- 1. Understand the constructional features & principle of operation of various Circuit Breakers
- 2. Identify applications of various Circuit Breakers in real time.
- 3. Understand the concept of Auto Reclosing of Circuit Breakers

MODULE-2

PROTECTIVE RELAYS: Basic Requirements of Protective Relays-Primary and Backup Protection

CLASSIFICATION OF RELAYS-I : Types of Electromagnetic Relays, Over current Relays, Directional & Non Directional Relays

At the end of the Module 2, students will be able to:

- 1. Understand the basic requirements of protective relay
- 2. Understand the applications of Electromagnetic, Over current Relays in real time
- 3. Identify the difference between Directional & Non Directional Relays

MODULE-3

CLASSIFICATION OF RELAYS-II: Differential Relays, Distance Relays, Static Relays-Advantages & Disadvantages, Microprocessor Based Relays-Advantages & Disadvantages, Universal Relay Torque equation.

COMPARATORS: Amplitude and Phase Comparators

At the end of the Module 3, students will be able to:

- 1. Understand the applications of Differential, Distance Relays in real time
- 2. Identify the difference between Static Relays, Microprocessor Based Relays
- 3. Explain the Universal Relay Torque equation

MODULE-4

GENERATOR PROTECTION: Protection of Generators against Stator Faults, Rotor Faults and Abnormal Conditions, Numerical Problems on percentage winding unprotected.

TRANSFORMER PROTECTION: Differential Protection, Buccholz Relay Protection, Numerical Problems on Design of CT Ratio.

FEEDER PROTECTION: Protection of Feeder (Radial & Ring Main) Using Over Current Relays, Protection of Transmission Line – Three Zone Protection Using Distance Relays.

At the end of the Module 4, students will be able to:

- 1. Understand various faults occurring in Generator, Transformer.
- 2. Explain the Protective schemes for Generator, Transformer & Feeder.
- 3. Compute the Percentage of winding unprotected.

MODULE-5

NEUTRAL GROUNDING: Advantages, Types of Neutral Grounding

OVER VOLTAGE PROTECTION: Causes of Over Voltages in Power Systems.-Phenomenon of Lightning, Protection against Lightning Over Voltages, Lightning Arresters –Rod Gap, Horn Gap, Valve Type and Zinc-Oxide Lighting Arresters.

At the end of the Module 5, students will be able to:

- 1. Understand the advantages of Neutral Grounding.
- 2. Understand the causes of over voltages in power systems.
- 3. Explain the phenomenon of Lightning.

Total hours: 48 hours

Term work:

Field work to EHV Substation / Tutorials/ Quiz's

Content beyond syllabus:

- 1. Carrier current protection
- 2. Insulation Coordination, Basic Impulse Insulation Level

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	со	Reference
1	Circuit Breakers	CO1	https://www.electrical4u.com/electrical-circuit-breaker- operation-and-types-of-circuit-breaker/
2	Protective relays	CO2	https://circuitglobe.com/types-of-circuit-breaker.html
3	Electromagnetic Relays	CO3	https://www.electrical4u.com/electromagnetic-relay- working-types-of-electromagnetic-relays/
4	Generator protection	CO4	https://circuitglobe.com/differential-protection-relay.html https://circuitglobe.com/impedance-type-distance- relay.html https://www.engineeringenotes.com/electrical- engineering/comparators/amplitude-comparators-and-its- types-devices-electrical-engineering/32806
5	Neutral grounding	CO5	https://circuitglobe.com/differential-protection-of-a- generator.html https://circuitglobe.com/differential-protection-of-a- transformer.html https://circuitglobe.com/feeder- protection.html#:~:text=Feeder%20Protection,the%20vari ous%20type%20of%20fault.

1. Power System Protection and Switchgear, Badri Ram, D.N Viswakarma, TMH Publications,2011.

2. Switchgear and Protection, Sunil S Rao, Khanna Publishers, 1992.

Reference Book(s):

- 1. Electrical Power Systems, C.L.Wadhwa, New Age international (P) Limited, Publishers, 2012.
- 2. Transmission network Protection, Y.G. Paithankar , Taylor and Francis, 2009.
- 3. Power system protection and switch gear, Bhuvanesh Oza, TMH, 2010

4. Principles of power systems by V.K.Mehta,Rohith Mehta S.Chand(P), 4th Edition

Online Resources:

1. http://175.101.102.82/moodle/course/view.php?id=691

2.https://subjects.ee.unsw.edu.au/elec9712/ELEC9712%20-%20Lec8%20-

%20Circuit%20breakers%20Notes.pdf

3. https://b-ok.asia/book/5482781/8e4867

4. https://b-ok.asia/book/5482780/4ec690

Web Resources:

1.https://nptel.ac.in/courses/108/101/108101039/

2. https://www.youtube.com/watch?v=GSh0f94JwaA&t=54s

3. https://www.youtube.com/watch?v=dPInm2zoirA&t=40s

4. https://www.youtube.com/watch?v=OH7-NJRdDyA

5. https://www.youtube.com/watch?v=Kd_73FnTueI

6. https://www.youtube.com/watch?v=OElOqRSN0FE

7. https://www.youtube.com/watch?v=Y5dAaeLPzzk

8. https://www.youtube.com/watch?v=ODj4sWxKm9o

	1	VARAYA	NA ENGI	NEERING	COLLEG	E:NELLO	RE						
20EE2507			MEASURE	MENT & IN	STRUMENT	ATION LAB		R2020					
III-B.Tech	Н	ours / Wee	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
II-Semester	0	0	2 30 1 40 60										
Pre-requisi	Pre-requisite: Nil												
Course Objectives:													
1.	Measurement of coefficient of coupling between two coupled coils.												
2.	Accurate	determina	tion of ind	uctance ar	id capacita	nce using [D.C and A.C	C Bridges					
3.	Calibratio	n of variou	is electrica	l measurin	g instrume	nts.							
Course Out	comes: Af	ter success	ful compl	etion of th	e course, tl	ne student	will be abl	e to:					
CO 1	Accurate	y determi	ne the valu	es of indu	ctance and	capacitand	e using a a	a.c bridges					
CO 2	Compute	the coeffic	ient of coup	oling betwe	en two cou	pled coils							
CO 3	Calibrate	various ele	ctrical mea	suring instr	uments								
CO 4	Accuratel	y determin	e the value	s of very lo	w resistance	es							

	CO-PO Mapping													
СО						Р	0						PS	50
	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	РО	РО	PSO	PSO
	<u>1 2 3 4 5 6 7 8 9 10 11 12 1 2</u>													
CO1	1	1	2	1					2	2				1
CO2	2	2	2	1				1	2	2				2
CO3	2	2	1	1				1	2	2				1
CO4	2	2	2	1	1			1	2	2				2
	1: Low, 2-Medium, 3- High													

List of Experiments

Any 12 of the following experiments are to be conducted:

1. Calibration and Testing of Single phase energy meter

2. Calibration of dynamometer wattmeter using phantom loading Test

3. Calibration of dynamometer power factor meter

4. Measurement of 3 -phase reactive power with single -phase wattmeter for balanced loading

5. Measurement of parameters of a choke coil using 3-Voltmeter and 3-Ammeter methods

6. Crompton D.C Potentiometer - Calibration of PMMC Ammeter and PMMC Voltmeter

7. Kelvin's Double Bridge - Measurement of low resistance - Determination of Tolerance

8. Capacitance Measurement using Schering Bridge

9. Inductance Measurement using Anderson Bridge.

10. LVDT and capacitance pickup - characteristics and calibration

11. Measurement of % Ratio Error and Phase angle Error of Given C.T by using Silsbee's Method.

12. Measuremnt of 3-phase power by using Two Wattmeter method

13. Resistance strain gauge- Strain measurement and calibration

Total hours: 36 hours

Term work:

Calibrate the Electrical & Electronics Instruments

Content beyond syllabus:

1. Measurement of 3-phase power with single wattmeter and 2 No's CT

Online Resources:

1.<u>http://www.acadmix.com/eBooks_Download</u>

Web Resources:

- 1. http://sreevahini.edu.in/pdf/electrical-measurements-lab.pdf
- 2. http://www.eee.griet.ac.in/wp-content/uploads/2014/12/EMI-Lab-Manual.pdf

	NA	RAYANA	A ENGINI	EERING	COLLEG	E: NELL	ORE					
20EE2508			POWE	R SYSTE	M LAB			R2020				
III-B.Tech	Н	ours / Wee	ek	Total	Credit		Max Mar	:ks				
	L	Т	Р	hrs	С	CIE	SEE	TOTAL				
II-Semester	I-Semester 0 0 3 30 1.5 40 60 100											
Pre-requisite: Must have the basic knowledge in Generation, Transmission & Distribution												
Course Objectives:												
1.	. To study the different methods of power system analysis.											
2.	To learn	about the	power sys	stem contr	rol.							
3.	To learn	about the	concepts o	f Power sy	vstem stabi	lity.						
Course O	utcomes:	After suc	cessful co	mpletion	of the cour	rse, the stu	udent will	be able to:				
CO 1	Examine	the power	system ar	nalysis (Bl	L =4)							
CO 2	Identify of	Identify characteristics of various Relays(BL=3)										
CO 3	Understa	nd various	s tests on N	Aotors and	Transform	ners (BL=	2)					

	CO-PO Mapping													
СО		PO PSO												
	PO	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	1				2	2		1	2	3
CO2	2	2	1	1	1				2	2		1	2	3
CO3	2	2	1	1	1				2	2		1	1	3
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	CO
Task - 1 - Determination of Sub transient Reactance of Salient Pole Synchronous Machine.	CO 1
Objective: To determine the sub transient direct axis reactance and Quadrature axis	
reactance of a salient pole synchronous machine.	
Task -2 -Determination of Sequence Impedances of Cylindrical Rotor Synchronous	CO 1
Machine.	
Objective: To determine experimentally Positive, Negative and Zero sequence reactance's	
of a cylindrical rotor synchronous machine.	
Task -3 - LG -Fault Analysis	CO 1
Objective: To find the fault currents and fault voltages when a single line to ground (L-G)	
fault occurred on unloaded alternator.	
TASK -4 - LLG -Fault Analysis	CO 1
Objective: To find the fault currents and fault voltages when a double line to ground	
(LLG) fault occurred on unloaded alternator.	
TASK -5 -Equivalent Circuit of a Three Winding Transformer.	CO 3
Objective: To determine the equivalent circuit parameters of a 3-Ø three winding transformer.	
TASK-6 - Separation of No-Load Losses of Three-Phase Squirrel Cage Induction Motor.	CO 3

Objective: To separate the No-Load losses (Iron losses and Mechanical losses) of a three	
phase squirrel cage induction motor.	
Task -7 - LL -Fault Analysis	CO 1
Objective: To find the fault currents and fault voltages when a line to line (L-L) faults	
occurred on unloaded alternator.	
TASK -8 - LLLG -Fault Analysis	CO 1
Objective: To find the fault currents and fault voltages when a Triple line to ground	
(LLLG) faults occurred on unloaded alternator.	
TASK -9 -Characteristics of IDMT Over Current Relay -Electromagnetic Type.	CO 2
Objective: To determine the Time-Current characteristics of IDMT Over Current Relay	
TASK -10 - Characteristics of Over Voltage Relay -Electromagnetic Type.	CO 2
Objective: : To determine the operating characteristics of Over Voltage Relay	
TASK -11 - Characteristics of Over Voltage Relay- Microprocessor Type.	CO 2
Objective: To determine the operating characteristics of the numerical Over Voltage Relay	
TASK -12 - Characteristics of Percentage Biased Differential Relay-Electromagnetic Type	CO 2
Objective: To determine the operating characteristics of Percentage Biased Differential Relay	

Additional Experiments:	
TASK -13 – Performance of Digital Distance Relay	CO 2
Objective: To verify the performance of Numerical Distance Relay	
TASK -14 - Characteristics of Percentage Biased Differential Relay- Static Type	CO 2
Objective: To determine the operating characteristics of Percentage Biased Differential Relay	
TASK - 15 – Ferranti Effect in Transmission Lines	CO 1
Objective: To study the Ferranti Effect of transmission line/cable	
TASK - 16 - Buchholz relay for Transformer protection	CO 1
Objective: To Study the abnormal conditions in a oil filled transformer by gas actuated Buchholz relay	
TASK - 16 - ABCD parameters of transmission line	
Objective: To study the performance of a transmission line. Also compute its ABCD parameters	
	<u>I</u>

Virtual Labs:

- 1. <u>http://www.ee.iitkgp.ac.in/faci_ps.php</u>
- 2. <u>https://vp-dei.vlabs.ac.in/Dreamweaver/list.html</u>

Self-Study:

Contents to promote self-Learning:

SNO	СО	Reference
1	CO 1	https://nptel.ac.in/courses/108/105/108105067/
2	CO 2	https://nptel.ac.in/content/storage2/courses/108101039/download/Le cture-15.pdf
3	CO 3	https://nptel.ac.in/courses/108/105/108105017/

Text Book(s):

- 1. POWER SYSTEM ANALYSIS by HADI SAADAT Tata McGraw-Hill Education, 01-Aug-2002.
- 2. Power System Protection and Switchgear, Badri Ram, D.N Viswakarma, TMH Publications, 2011.

Reference Book(s):

- 1. Power Systems Analysis, Grainger and Stevenson, Tata Mc Graw-hill, 2005.
- 2. Modern Power system Analysis 2nd edition, I.J.Nagrath&D.P.Kothari: Tata McGraw-Hill Publishing Company, 2003.
- 3. Kundur, P., "Power System Stability and Control", Mc. Graw Hill inc. 1994.
- 4.Jim Arlow, Ila Neustadt, "UML 2 and the Unified Process: Practical Object-Oriented Analysis and Design", 2nd Edition, Pearson, (2005).

Web Resources:

1.<u>http://www.academia.edu/Documents/in/Power-System-Analysis-by-Hadi-Saadat-Electrical-Engineering</u>

2. <u>https://nptel.ac.in/courses/108/101/108101040/</u>

- 3. <u>https://nptel.ac.in/courses/108/104/108104052/</u>
- 4. <u>https://nptel.ac.in/courses/108/105/108105067/</u>
- 5. <u>https://nptel.ac.in/courses/108/101/108101039/</u>

Department of E.E.E :: 2020-2021

SEMESTER VII

Subject	Category	Course Title	Cor	itact v	Perio veek	ods per	Credits	Schem N	Scheme of Examination Max. Marks			
Code	Category	Course Thie	\mathbf{L}	Т	Р	Total	Credits	Int. Marks	Ext. Marks	Total Marks		
20HS5001- 8	HE	Humanities and Social Science Elective	2	0	0	2	2	40	60	100		
20EE2014	PC	Solid State Electric Drives	3	0	0	3	3	40	60	100		
20EE2015	PC	Power System Operation and Control	3	0	0	3	3	40	60	100		
-	OE	Open Elective IV	2	0	2	4	3	40	60	100		
20EE4016- 20	PE	Professional elective IV	3	0	0	3	3	40	60	100		
20EE4021- 25	PE	Professional elective V	3	0	0	3	3	40	60	100		
20EE2509	PC	Electronic systems design lab	0	0	2	2	1	40	60	100		
20EE2510	PC	Power Systems Simulation Lab	0	0	3	3	1.5	40	60	100		
20CD6005	SC	Career competency Development V	0	0	2	2	1	40	60	100		
20CC6501	SC	Skill development Training	0	0	2	2	1	40	60	100		
20EE7502	PR	Internship II/on job training/Com Ser	0	0	3	3	1.5	00	100	100		
20MC8002 -12	MC	Mandatory course IV	2	0	0	2	0	00	00	00		
		Counseling/Mentoring	0	0	1	1	0					
		Sports/Hobby Clubs/Activities	0	0	2	2	0					
		Activity Point Programme		Dı	uring	the Seme	ster	ter 20 Poin				
		Total	18	0	17	35	23	400	700	1100		

NARAYANA ENGINEERING COLLEGE:NELLORE										
20EE2014			Solid Sta	te Electric	cal Drives			R2020		
IV-B.Tech	H	ours / We	ek	Total	Credit		`ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
I-Semester	3	0	0	48	3	40	60	100		
Pre-requisite: Nil										
Course Objectives:										
1. To understand steady state operation and transient dynamics of a motor load system.										
2. To study and analyze the operation of the converter fed dc drive, both qualitatively and										
quantitatively.										
3. To study and analyze the operation of the chopper fed dc drive, both qualitatively and										
quantitative	ly.									
4. To study	and under	stand the	operation a	and perfor	mance of A	AC Induct	ion motor	drives.		
5. To study	and under	rstand the	operation	and perfor	mance of	AC Synch	ironous mo	otor drives.		
Course Ou	itcomes: A	After succ	essful co	mpletion	of the cou	rse, the st	udent will	be able to:		
CO 1	Describe	the basic	requireme	nts of mot	or selectio	n for diffe	rent load p	profiles.		
CO 2	Analyze	the opera	tion of the	converter	fed dc driv	ve				
CO 3	Demonst	rate the op	peration of	the chopp	er fed de d	lrive				
CO 4	Illustrate	the opera	tion and pe	erformanc	e of AC In	duction m	otor drives	8		
CO 5	Analyze	the induc	tion motor	drive usin	ng inverter					

	CO-PO Mapping													
СО		PO PSO											50	
	PO										PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	2	2								3	2
CO2	2	2	2	2	2								3	2
CO3	2	2	2	2	2								3	2
CO4	2	2	2	2	2								3	2
CO5	2	2	2	2	2								3	2
					l: Low	v. 2-M	ediun	n. 3- H	ligh					

MODULE – 1

Electric Drive

Classification of Electric Drives, Basic elements of Electric Drive, Dynamic Control of a Drive system, Stability analysis, Introduction to Thyristor Controlled Drives, Single Phase Semi and Fully Controlled Converters Connected to D.C Separately Excited motor-Output Voltage and Current Waveforms – Speed and Torque Expressions -problems.

At the end of the Module 1, students will be able to:

- 1. Understand the basic requirements of motor selection
- 2. Analyze the converter fed DC drives

MODULE -2

Three Phase Semi and Fully Controlled Converters Connected to D.C Separately Excited and D.C Series Motors – Continuous Current Operation – Output Voltage and Current Waveforms – Speed and Torque Expressions – Speed – Torque Characteristics- Problems. Introduction to Four Quadrant Operation – Motoring Operations, Electric Braking – Plugging, Dynamic and Regenerative Braking Operations. Four Quadrant Operation of D.C Motors by Dual Converters At the end of the Module 2, students will be able to:

1. Analyze the three phase converter fed DC drives

- 2. Differentiate between braking methods of motors
- 3. Understand the four quadrant operation

MODULE-3

DC motor drives:

Single Quadrant, Two Quadrant and Four Quadrant Chopper Fed DC Separately Excited and Series Excited Motors – Continuous Current Operation – Output Voltage and Current Wave Forms – Speed Torque Expressions – Speed Torque Characteristics.

At the end of the Module 3, students will be able to:

- 1. Understand the chopper fed DC drives
- 2. Analyze the characteristics of chopper fed DC drives

MODULE-4

Induction Motor Stator Voltage Control and Characteristics. AC Voltage Controllers – Waveforms – Speed Torque Characteristics - Stator Frequency Control and Characteristics. Voltage Source and Current Source Inverter - PWM Control – Speed Torque Characteristics.

At the end of the Module 4, students will be able to:

- 1. Understand the stator side control of induction motor drives
- 2. Analyze the inverter fed Induction Motor Drives

MODULE-5

Induction motor drives:

Static Rotor Resistance Control – Slip Power Recovery – V/f control of Induction Motor – Their Performance and Speed Torque Characteristics – Advantages- Applications – Problems. **Synchronous motor drives:**

Separate Control & Self Control of Synchronous Motors – Operation of Self Controlled Synchronous Motors by VSI and CSI

At the end of the Module 5, students will be able to:

- 1. Understand the rotor side control of induction motor drives
- 2. Analyze the performance of induction motor drives.
- 3 Understand the performance of synchronous motor drives

Total hours: 48 hours

Term work:

Tutorials/Quizes

Content beyond syllabus:

1. Cycloconverter fed synchronous motor drives

Self-Study:

C	Contents to promote self-Learning:										
	SNO	Торіс	CO	Reference							
	1	Thyristor Controlled	CO1	https://www.youtube.com/watch?v=-EC6q5_grM4							
		Drives									
	2	Four Quadrant	CO2	https://www.youtube.com/watch?v=Tfrv9DJfVgs							
		Operation									
	3	Chopper Fed DC	CO3	https://www.youtube.com/watch?v=pdjVSWSQ83w							
		Motors									
	4	AC Voltage Controller	CO4	https://www.youtube.com/watch?v=Pc7txXwvhBM							
		fed AC drives									
	5	Slip Power Recovery	CO5	https://www.youtube.com/watch?v=9Z0Tn5iTYyE							
		scheme									

- 1. Power semiconductor controlled drives, G K Dubey, Prentice Hall, 1995.
- 2. Modern Power Electronics and AC Drives, B.K.Bose, PHI, 2002.

Reference Book(s):

- 1. Power Electronics, MD Singh and K B Khanchandani, Tata McGraw-Hill Publishing company, 2008.
- 2. Power Electronic Circuits, Devices and applications, M.H.Rashid, PHI, 2005.
- 3. Electric drives Concepts and Applications, Vedam Subramanyam, Tata McGraw Hill

Online Resources:

1. https://doku.pub/documents/electric-drives-by-gk-dubey-59gge6y3vm0n

2. https://nptel.ac.in/courses/108/104/108104140/

Web Resources:

- 1. <u>https://www.youtube.com/watch?v=1AT1yuQ9awM&list=PLFW6lRTa1g83slfVY1p1xGqPGYUmXyahx</u>
- <u>https://www.youtube.com/watch?v=WsDPqDqnpyw&list=PLuv3GM6-gsE3UGP1cSOl1KuEXscGFdKXB</u>

NARAYANA ENGINEERING COLLEGE:NELLORE										
20EE2015		POWER	SYSTEM	OPERAT	TON & CO	ONTROL		R2020		
IV-B.Tech	H	lours / Wee	k	Total	Credit		·ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
I-Semester	3	0	0	48	3	40	60	100		
Pre-requis	ite: Nil									
Course Objectives:										
1. To understand the importance of optimal power flow and power system.										
2. To Describe the hydrothermal scheduling, and its constraints.										
3. To listen about single area and two area load frequency control, modeling of turbines										
4. To understand the Deregulation, Restructuring models.										
Course Ou	tcomes: Af	ter success	ful compl	etion of th	e course, th	ne student v	will be able	e to:		
CO 1	Enumerat	e the Heat	rate curves	s, Economi	c operation	s of power	systems			
CO 2	Describe t	the Hydroth	ermal pow	er stations	Scheduling					
CO 3	Discuss th	ne single a	ea load fre	equency con	ntrol, mode	lling of tur	bines, spe	ed governing		
	systems.	Ç				U U		0 0		
CO 4	Illustrate	two area 1	oad freque	ncy control	, tie line a	and econon	nic dispatel	h control for		
	load frequ	ency control	ol.							
CO 5	Discuss the	ne deregulat	ion and con	ditions of de	eregulation in	n a power sy	stems.			

	CO-PO Mapping													
СО		РО												50
	PO										PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	2	2		2								3	2
CO2	2	2	2		2								3	2
CO3	2	2	2	2	2								3	2
CO4	2	2	2	2	2								3	2
CO5	2	2	2		2								3	2
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					

MODULE – 1

UNIT – ECONOMIC OPERATION OF THERMAL POWER STATION

Over view of power system operation and Control, System Load variation, Formulation of Economic dispatch in Thermal Power station - Heat Rate Curve – Cost Curve –Incremental Fuel and Production Costs, Input-Output Characteristics, Constraints of power systems, Optimum Scheduling of Thermal power station

Optimum Generation Allocation:

Optimum Generation Allocation with Line Losses Neglected. Loss Coefficients, General line loss formula, Optimum Generation Allocation with Line Losses

At the end of the Module 1, students will be able to:

- 1. Discuss the Economic dispatch in Thermal power station
- 2. Determine the Optimum Generation Allocation without losses
- 3. Discuss the Optimum Generation Allocation with and without losses

MODULE -2

UNIT-II-HYDROTHERMAL SCHEDULING and Governing

Optimal scheduling of Hydrothermal system: Scheduling problems, Optimal Scheduling of Hydrothermal System, short term Hydro thermal Scheduling(4h)

MODELLING OF TURBINE AND SPEED GOVERNING SYSTEM

Modeling of Turbine: First Order Turbine Model, Approximate Linear models, Modeling of Governor, Mathematical Modeling of Speed Governing System, Derivation of Small Signal Transfer Function – Block Diagram (4h)

At the end of the Module 2, students will be able to:

- 1. Listen the Hydro Electro Power Plant Models
- 2. Examine the constraints
- 3. Enumerate the Hydrothermal Scheduling problems

MODULE-3

LOAD FREQUENCY SINGLE AREA CONTROL

Necessity of Keeping Frequency Constant.–Definition of control Area, – Mathematical modeling of generator, loads, for LFC & corresponding block diagram representation, Block Diagram Representation of an Isolated Power System – Steady State Analysis – Dynamic Response – Uncontrolled Case. (8h)

At the end of the Module 3, students will be able to:

- 1. Discuss the Necessity of keeping frequency constant
- 2. Listen the Load Frequency Single Area Control
- 3. Describe the steady state Analysis

MODULE-4

Load Frequency Control of 2-Area System: Load Frequency control of 2-Area system and its Block diagram. Uncontrolled case and controlled case. Tie-Line Bias Control. Proportional Plus Integral Control of Single Area and Its Block Diagram Representation, Economic Dispatch Control.

At the end of the Module 4, students will be able to:

- 1. Discuss the Load Frequency Control of 2-Area system
- 2. Examine the Tie Line Bias Control
- 3. Describe the Economic Dispatch Control

MODULE-5

Deregulation of Power system:

Deregulation, Need and conditions for deregulation, Basics of public good economics, Components of Deregulation, Technical, economic & Regulatory issues involved in deregulation of power industry, Privatization, Competition in the electricity sector, conditions, barriers, benefits of Challenges, Reregulation.

At end of the Module 5, students will be able to :

- 1. Describe the Deregulation and its conditions
- 2. Examine Technical, economic & Regulatory issues of deregulation of power industry
- 2. Discuss the Deregulation and benefits of deregulation

Total hours: 48 hours

Term work:

Field work of power system operation & Deregulation in Thermal power plant

Content beyond syllabus:

1. Knowledge of Voltage control in Power systems

Self-Study:

Content	Contents to promote self-Learning:											
SN	Торіс	CO	Reference									
0												
1	Economic Operation of Thermal power station	CO1	http://175.101.102.82/moodle/mod/folder/view.php?id=13928									
2	Hydro thermal scheduling	CO2	http://175.101.102.82/moodle/mod/folder/view.php?id=13928									
3	Load frequency single area control	CO3	http://175.101.102.82/moodle/mod/folder/view.php?id=13928									
4	Load frequency two area control	CO4	http://175.101.102.82/moodle/mod/folder/view.php?id=13928									
5	Deregulation of Power system	CO5	http://175.101.102.82/moodle/mod/folder/view.php?id=13928									

1. Power Generation Operaton and control - Wood and Wollenerg, wiley Publishers

2. Power systems operation and Control - Chakravarthi, Halder

3. D.P.Kothari and I.J.Nagrath, " Modern Power System Analysis" Tata Mc Graw Hill

publishing company Ltd., 2003.

Reference Book(s):

1. S Sivanagaraju and G Sreenivasan, "Power System Operation and Control ", Pearson"MeriPustak-Machwan Communication & Research publishing Company Ltd,2004

2 Geoffrey Rothwell, Tomas Gomez (Eds), " Electricity Economics Regulation and Deregulation", IEEE Press Power Engineering series, John Wiley & Sons, 2003

Loi Lei Lai, "Power System Restructuring and Deregulation", John Wiley & Sons Ltd, England, 2001
Mohammad Shahidehpour, Muwaffaq Alomoush, "Restructured Electric power Systems: Operation, Trading and Volatility", Marcel Dekker, Inc., 2001

Online Resources: <u>http://175.101.102.82/moodle/course/view.php?id=610</u> 1.<u>http://www.acadmix.com/eBooks_Download</u>

Web Resources: http://175.101.102.82/moodle/course/view.php?id=610

1.<u>https://lecturenotes.in/notes/14667-note-for-power-system-operation-and-control-psoc-by-jntu-</u> heroes?reading=true&continue=2

2.https://lecturenotes.in/notes/17488-note-for-power-system-operation-and-control-psoc-by-sucharita-das

3.<u>http://www.crectirupati.com/sites/default/files/lecture_notes/PSOC%20-%20%20IV%20-%20EEE_0.pdf</u> 4.<u>http://www.tutorialspoint.com/</u>

	NARAYANA ENGINEERING COLLEGE: NELLORE										
20EE2510		POW	ER SYST	EM SIM	ULATION	LAB		R2020			
IV-B.Tech	Η	ours / We	ek	Total	Credit	Max Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
I-Semester	0	0	3	30	1.5	40	60	100			
Pre-requisite: Nil											
Course Objectives:											
1.	To study	the differe	ent method	ls of powe	r system ai	nalysis.					
2.	To learn	about the	power sys	stem cont	rol.						
3.	To learn a	about the	concepts P	ower syste	em stability	/.					
Course O	utcomes:	After suc	cessful co	mpletion	of the cou	rse, the stu	udent will	be able to:			
CO 1	Examine	the power	system ar	nalysis- (B	L-4)						
CO 2	Construc	t the contr	ollers of a	power sys	stem. (BL-	3)					
CO 3	Analyze t	he variou	s power sy	stem stab	ilities- (BL-	4)					

	CO-PO Mapping													
CO		PO											PS	5 0
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	2	1	2				2	2		1	2	3
CO2	2	2	1	1	2				2	2		1	2	3
CO3	2	2	1	1	2				2	2		1	1	3
	1: Low, 2-Medium, 3- High													

COURSE CONTENT	CO
Task - 1 - FORMATION OF BUS ADMITTANCE MATRIX(Y _{BUS})	CO 1
Objective: To form Bus Admittance matrix by using Matlab and verify output with	
theoretical output.	
Task -2 -POWER FLOW ANALYSIS USING GAUSS SEIDAL METHOD	CO 1
Objective: To run the power flow of the given system using Gauss Seidal Method and	
verify the obtained results with theoretical calculations.	
Task -3 - POWER FLOW ANALYSIS USING NEWTON RAPHSON METHOD	CO 1
Objective: To run the power flow of the given system using Newton Raphson Method	
and verify the obtained results with theoretical calculations.	
TASK -4 -LOAD FLOW ANALYSIS USING FAST DECOUPLED METHOD	CO 1
Objective: To obtain PV & QV curves on IEEE 30-bus by applying Fast Decoupled	
Method.	
TASK -5 -STEP RESPONSE OF TWO AREA SYSTEM WITH AND WITHOUT	CO 2
INTEGRAL CONTROL AND ESTIMATION OF FREQUENCY DEVIATION	
USING SIMULINK	
Objective: To obtain the frequency deviation of the two-area power system with and	
without integral controller for a sudden change of load in any area.	
TASK-6 STEP RESPONSE OF TWO AREA SYSTEM WITH INTEGRAL CONTROL AND ESTIMATION OF TIE-LINE POWER DEVIATION USING	CO 2

SIMULINK	
Objective: To obtain the power deviation of the two-area power system with and without	
integral controller for a sudden change of load in any area.	
TASK -7 - ANALYSIS OF STEADY STATE STABILITY OF A SINGLE	CO 2
MACHINE CONNECTED TO INFINITE BUS USING POINT BY POINT	
METHOD.	
Objective: To develop a MATLAB program for the analysis of steady state stability in the case of single machine connected to infinite bus.	
(OR)	
To develop a MATLAB program to solve swing equation of the problem.	
TASK -8 - DESIGN OF P-I-D CONTROLLER	CO 2
Objective: To Design a P-I-D controller of a Transfer Function and to obtain the	
Proportional, Integral and derivative gains.	
TASK -9 -DESIGN OF FUZZY LOGIC AIR CONDITIONER	CO 2
Objective: To design a fuzzy air conditioner using MATLAB	
TASK -10 - LOAD FLOW ANALYSIS USING NEURAL NETWORKS	CO 2
Objective: To implement Neural Network on load flow analysis.	
TASK -11 - PROGRAM FOR SWING CURVE WHEN THE FAULT IS CLEARED.	CO 3
Objective: To determine the Swing curve when the fault is cleared i) At the beginning of	
the Line ii) At the middle of the line	
TASK -12 - SWING CURVE FOR SUSTAINED FAULT AND CRITICAL	CO 3
CLEARING ANGLE & TIME.	
Objective: To determine swing curve for sustained fault and critical clearing angle & time.	

Additional Experiments:	
TASK -13 - DESIGN OF KALMAN FILTER	CO 3
Objective: To design a time varying and a steady state "KALMAN FILTER" and to obtain	
its response, covariance error, values before and after filtering.	
Task - 14- FORMATION OF BUS IMPEDANCE MATRIX(Z _{BUS})	CO 1
Objective: To form Bus Impedance matrix by using MATLAB and verify output with	
theoretical output.	
TASK - 15 - MATLAB PROGRAM TO FIND OPTIMUM LOADING OF GENERATORS NEGLECTING TRANSMISSION LOSSES	CO 2
Objective: To find optimum loading of two units for the given load neglecting transmission losses and verify using MATLAB.	
TASK - 16 - MATLAB PROGRAM TO FIND OPTIMUM LOADING OF	CO 2

GENERATORS WITH PENALTY FACTORS

Objective:To find optimum loading of two units for the given load with penalty factors and verify using MATLAB.

Self-Study:

Contents to promote self-Learning:

SNO	СО	Reference
1	CO 1	https://nptel.ac.in/courses/108/105/108105067/
2	CO 2	1. https://nptel.ac.in/courses/108/101/108101040/ 2. https://nptel.ac.in/courses/108/104/108104052/
3	CO 3	1. https://nptel.ac.in/courses/108/101/108101040/ 2. https://nptel.ac.in/courses/108/104/108104052/

Text Book(s):

- 1. POWER SYSTEM ANALYSIS by HADI SAADAT Tata McGraw-Hill Education, 01-Aug-2002.
- 2. MATLAB for Electrical Engineers and Technologists: MATLAB Tutorial with Practical Electrical Examples- Stephen P. Tubbs, 2010

Reference Book(s):

- 1. Power Systems Analysis, Grainger and Stevenson, Tata Mc Graw-hill, 2005.
- 2. Modern Power system Analysis 2nd edition, I.J.Nagrath & D.P.Kothari: Tata McGraw-Hill Publishing Company, 2003.
- 3. Kundur, P., "Power System Stability and Control", Mc. Graw Hill inc. 1994.
- 2. Jim Arlow, Ila Neustadt, "UML 2 and the Unified Process: Practical Object-Oriented
- 3. Analysis and Design", 2nd Edition, Pearson, (2005).

Web Resources:

1.<u>http://www.academia.edu/Documents/in/Power-System-Analysis-by-Hadi-Saadat-Electrical-Engineering</u>

- 2. <u>https://nptel.ac.in/courses/108/101/108101040/</u>
- 3. https://nptel.ac.in/courses/108/104/108104052/
- 4. <u>https://nptel.ac.in/courses/108/105/108105067/</u>

Department of E.E.E :: 2020-2021

SEMESTER VIII

Subject	Category	Course Title	Con	itact W	Perio veek	ods per	Credits	Scheme of Examination Max. Marks			
Code			L	Т	Р	Total		Int. Marks	Ext. Marks	Total Marks	
20EE7503	PR	Project work, seminar and internship	0	0	0	0	12	60	140	200	
		Activity Point Programme	During the Sem		ester	20 points		3			
			0	0	0	0	12	60	140	200	

PROFESSIONAL ELECTIVES (PE)

Elective Track/Group	Professional Flective-1	Professional Flective-2	Professional Flective-3	Professional Flective-4	Professional Flective-5
Advanced Power systems	Industrial Electrical Systems (20EE4001)	Power System Planning (20EE4006)	Reactive Power Compensation and Management (20EE4011)	Power Quality (20EE4016)	Smart Grid Technologies (20EE4021)
Control Systems	ol Systems System Advanced Modeling and Control Digital Signal Identification systems (20EE4002) (20EE4007)		Multivariable Control System (20EE4017)	Real Time Control System (20EE4022)	
Electromechanical Systems	MachineElectricModeling andMachinAnalysisDesign(20EE4003)(20EE4003)		Programmable Control Devices and Applications (20EE4013)	Hybrid Electrical Vehicles (20EE4018)	Automotive Electrical Engineering (20EE4023)
Energy Systems	RenewableSolar andWind andEnergyFuel CellBiomassy SystemsConversionEnergyEnergySystemsSystemsSystemsSystems(20EE4004)(20EE4009)(20EE4014)		Wind and Biomass Energy Systems (20EE4014)	Utilization of Electrical Energy (20EE4019)	Energy Audit &Demand side Management (20EE4024)
Power Electronics	Advanced Power Electronics (20EE4005)	Advanced Electrical Drives (20EE4010)	HVDC & FACTS (20EE4015)	Advanced Power Converters (20EE4020)	Advanced Power Semiconductor Devices and Protection (20EE4025)

NARAYANA ENGINEERING COLLEGE:NELLORE											
20EE4001	INDUSTRIAL ELECTRICAL SYSTEMS R2020										
	Hours / Week			Total	Credit Max Marl			'ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requisite: Nil											
Course Objectives:											
1. To make students understand the fundamental theory governing the photovoltaic											
devise and	make then	n carry out	prelimina	ary system	design.		U	•			
2. T	o learn the	fundamer	ntal knowl	edge abou	t various f	uel cell tec	hnologies.				
Course O	Course Outcomes : After successful completion of the course, the student will be able to:										
CO 1	Understan	d the electr	ical wiring	systems for	r residentia	l, commerc	ial and indu	ıstrial			
	consumers through symbols, drawings and SLD (BL-2)										
CO 2	Justify the need of industrial electrical system components and industrial automation (BL-										
	3)										
CO 3	CO 3 Analyze the size, rating and cost of electrical installations for residential and commercial										
	applications (BL-4)										
CO 4	Analyze the appropriate electrical system with protective equipments for industrial										
	applicatio	ns (BL-4)									
CO 5	Understand the role of industrial automation (BL-2)										

	CO-PO Mapping													
СО		PO										PSO		
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2										2	1
CO2	3	2											3	2
CO3	3	2	2										2	2
CO4	3	2	2	2									3	3
CO5	2	2			2								2	1
	1: Low, 2-Medium, 3- High													

COURSE CONTENT										
MODULE – 1	MODULE - 1Electrical System Components10 Hours									
LT system wiring comp structure, Protection co diagram (SLD) of a wir practices	bonents, selection of cables, wires, switches, distribution bo mponents- Fuse, MCB, MCCB, ELCB, Symbols for wiring ing system, Contactor, Isolator, Relays, MPCB, Electric sh	x, metering system, Tariff components, Single line ock and Electrical safety								
At the end of the Module 1, students will be able to:										
1. Understand the different types protecting devices (BL-2)										
2. Discuss the	2. Discuss the various performance characteristics of protecting devices.(BL-2)									
MODULE -2	Residential and Commercial Electrical Systems	10 Hours								
Types of residential and calculation and sizing o system calculations, Re lamps, Earthing of com	Fypes of residential and commercial wiring systems, General rules and guidelines for installation, Load calculation and sizing of wire, Rating of main switch, distribution board and protection devices, Earthing system calculations, Requirements of commercial installation, Deciding lighting scheme and number of amps. Earthing of commercial installation. Selection and sizing of components									
At the end of the Module 2, students will be able to:										
1. Discuss th	1. Discuss the different types of wiring systems (BL-3)									
2. Discuss th	2. Discuss the concepts of Earthing system and its calculation (BL-3)									
MODULE-3	MODULE-3 Illumination Systems 09 Hours									
Understanding various terms regarding light- lumen, intensity, candle power, lamp efficiency, specific consumption, glare, space to height ratio, waste light factor, depreciation factor, Various illumination schemes, Incandescent lamps and modern luminaries like CFL, LED and their operation, Energy saving in illumination systems, Design of a lighting scheme for a residential and commercial premises, Flood lighting At the end of the Module 3, students will be able to:

1. Predict the performance of various lighting systems in industry. (BL-4)

MODULE-4	Industrial Electrical Systems	10 Hours
NIODULE-4	muustiai Electricai Systems	10 110015

HT connection, Industrial substation, Transformer selection, Industrial loads, motors, starting of motors, SLD, Cable and Switchgear selection, Lightning Protection, Earthing design, Power factor correction – kVAR calculations, type of compensation, Introduction to PCC, MCC panels. Specifications of LT Breakers, MCB and other LT panel components

DG Systems, UPS System, Electrical Systems for the elevators, Battery banks, Sizing the DG, UPS and Battery Banks, Selection of UPS and Battery Banks

At the end of the Module 4, students will be able to:

1. Analyze the application of various equipments in industrial electrical system. (BL-4)

MODULE-5	Industrial Electrical System Automation	09 Hours

Study of basic PLC, Role of automation, Advantages of process automation, PLC based control system design, Panel Metering and Introduction to SCADA system for distribution automation

At the end of the Module 5, students will be able to:

1. Understand the performance of industrial automation for better operation of industry. (BL-2)

Total hours: 48 hours

Term work:

1. Field trip

Content beyond syllabus:

- 1. Introduction of hydrogen energy systems
- 2. Hydrogen production processes
- 3. Hydrogen storage and safety

Self-Study:

Contents to promote self-Learning:

SNO	MODULE	Reference
1	Electric shock and	https://electrical-engineering-portal.com/21-safety-
	Electrical safety practices	rules-for-working-with-electrical-equipment
2	General rules and	https://www.tutorhelpdesk.com/homeworkhelp/Engine
	guidelines for	ering-/General-Rules-For-Wiring-Assignment-
	installation	Help.html
3	Flood lighting	https://www.tutorialspoint.com/what-is-flood-lighting-
		definition-purpose-calculation-and-applications
4	Selection of UPS and	https://myelectrical.com/notes/entryid/164/ups-battery-
	Battery Banks	sizing#:~:text=Example%20of%20UPS%20battery%2
		0sizing,cells%20of%202%20V%20each).
5	Introduction to SCADA	https://www.scadalink.com/support/knowledge-base/an-
	system for distribution	introduction-to-
	automation	scada/#:~:text=The%20term%20SCADA%20stands%20f
		or,for%20control%20or%20monitoring%20purposes.

Text Book(s): 1. S. L. Uppal and G. C. Garg, "Electrical Wiring, Estimating & Costing", Khanna publishers, 2008.

2. K. B. Raina, "Electrical Design, Estimating & Costing", New age International, 2007. 3. S. Singh and R. D. Singh, "Electrical estimating and costing", Dhanpat Rai and Co., 1997. **Reference Book(s):** 1. H. Joshi, "Residential Commercial and Industrial Systems", McGraw Hill Education, 2008 5. IS Standards : https://bis.gov.in 2. **Online Resources:** 1. https://electrical-engineering-portal.com/21-safety-rules-for-working-with-electrical-equipment https://www.tutorhelpdesk.com/homeworkhelp/Engineering-/General-Rules-For-Wiring-2. Assignment-Help.html https://www.tutorialspoint.com/what-is-flood-lighting-definition-purpose-calculation-and-3. applications https://myelectrical.com/notes/entryid/164/ups-battery-4. sizing#:~:text=Example%20of%20UPS%20battery%20sizing,cells%20of%202%20V%20each). https://www.scadalink.com/support/knowledge-base/an-introduction-to-5. scada/#:~:text=The%20term%20SCADA%20stands%20for,for%20control%20or%20monitoring%20pur poses. Web References: 1. https://nptel.ac.in/courses/108107112

NARAYANA ENGINEERING COLLEGE:NELLORE													
20EE4006		POWER SYSTEM PLANNING R2020											
	He	ours / We	ek	Total	Credit		Max Mar	arks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
	3	0	0	48	3	40	60	100					
Pre-requisite: Nil													
Course Objectives:													
1.	To make s	To make students understand the fundamental theory governing the power system											
	planning an	nd forecas	sting.										
2.	To make t	he studen	its to unde	rstand the	economic	s related	to expansi	on of power					
	system.												
3.	To learn th	ne fundan	nental kno	wledge ab	out transn	nission and	d distribut	ion planning					
	for future e	expansion	•	. 1.1	1. 1.11.								
4.	To make the	ne student	s to under	stand the r	eliability c	oncept in	power sys	tem to better					
5	operation of	of power s	system.	41			1 4						
5.	10 make ti	ne studen	ts to make	the plann	ng with re	spect to e	lectricity r	narket based					
Course	utcomes:	A fter suc	cessful co	moletion	of the cou	rea tha et	udent wil	l be able to:					
	Discuss n	rimary co	mponents	of power of	vetem play	ning play	ning meth	ndology for					
COT	ontimum	nower sv	stem expar	of power s	show know	illing, piai vledge of f	orecasting	of future					
	load requ	irements (of both der	nand and e	energy hy (leterminis	tic and sta	tistical					
	technique	es using fo	orecasting	tools. (BL	-2)		tie und stu	listicui					
CO 2	Discuss n	nethods to	mobilize	resources	to meet the	investme	nt require	ment for the					
001	power see	ctor and u	nderstand	economic	appraisal t	o allocate	the resour	ces					
	efficiently	y and app	reciate the	investmer	t decisions	s to power	generation	n and					
	planning.	for system	n energy ir	the count	ry (BL-2)	1	C						
<u> </u>	Analyza	ha amanat	ina statas s	ftennemic	aion avata	n thair as	an aristad a	antinganaiaa					
003	Analyze I	ne operat	the system	ond discu	sion system	n, their as	sociated of	ontingencies					
	supply ru	les netwo	uie system ork develor	and unset	the system	n studies ((BI -4)	unnig,					
CO 4	Discuss r	eliability	criteria for	generation	transmis	sion distr	ibution and	d reliability					
0.0.4	evaluation	n and anal	lysis orid	reliability	voltage di	sturbances	and their	remedies					
	(BL-2)	unu	., 510, <u>5114</u>		. shuge ui								
CO 5	Discuss p	lanning a	nd implem	entation o	f electric –	utility act	ivities, ma	rket					
	principles	s and the i	norms fran	ned by CE	RC for onl	ine trading	g and exch	ange in the					
	interstate	power ma	arket. (BL-	-2)			e	C					
2. 3. 4. 5. Course O CO 1 CO 2 CO 3 CO 4 CO 5	To make t system. To learn th for future of To make th operation of To make th demand. Discuss p optimum load required technique Discuss n power sec efficiently planning Analyze t and the st supply ru Discuss p principles interstate	he studen he fundan expansion he student of power s he student After suc power sy irements es using for nethods to ctor and u y and appr for syster the operat ability of les, netwo eliability of and anal planning a s and the n	ts to under nental kno s to under system. ts to make <u>cessful co</u> mponents stem expan of both der <u>orecasting to</u> mobilize nderstand reciate the n energy ir ing states of the system ork develop criteria for lysis, grid to nd implem norms fram arket. (BL-	rstand the wledge ab stand the r the planni ompletion of power s naid and a tools. (BL- resources economic investmer the count of transmiss and discu- pment and generation reliability, entation o hed by CEI- -2)	economic out transm eliability c ing with re of the cou system plan show know energy by c -2) to meet the appraisal t appraisal t the decisions ry (BL-2) sion system n, transmis voltage di f electric – RC for onl	s related to hission and oncept in spect to e rse, the st ning, plan dedge of f determinis investme o allocate s to power m, their as es of distr n studies. (sion, distr sturbances utility act: ine trading	d distribut power sys lectricity r <u>udent will</u> ning meth orecasting tic and sta nt requirent the resour generation sociated co ibution pla BL-4) ibution and s and their ivities, ma g and exch	on of powe ion plannin tem to bette narket base <u>I be able to</u> nodology fo of future tistical ment for the ces n and ontingencie unning, d reliability remedies rket ange in the					

	CO-PO Mapping													
CO		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2	1	2		2	2	2		2	2	1
CO2	2	3	2	1	2	2		2				2	3	2
CO3	3	2	2	2	2	2		1	2	2		2	2	2
CO4	3	2	2	2	1	2		2				2	3	3
CO5	3	2	2	2	2	2		2	2	2		2	2	1
					l: Lov	v, 2-M	ediun	n, 3- H	ligh					

COURSE CONTENT									
MODULE – 1	Power System	10 Hours							
Power System:		L							
Power Systems, Planı Power Growth, Natio Power System, Power Scenario Planning.	ning Principles, Planning Process, Project Planning, Ponal and Regional Planning, Enterprise Resources Plan Resources, Planning Tools, Power Planning Organisa	ower Development, ning, Structure of a ation, Regulation,							
Electricity Forecast	ing:								
Load Requirement, S Modelling, Spatial – I of a System.	ystem Load, Electricity Forecasting, Forecasting Tech Load Forecasting, Peak Load - Forecast, Reactive – Lo	niques, Forecasting oad Forecast, Unloading							
At the end of the Moc	lule 1, students will be able to:								
 Discuss prima power system Show knowled deterministic a 	ry components of power system planning, planning m expansion, various types of generation, transmission a lge of forecasting of future load requirements of both and statistical techniques using forecasting tools.	ethodology for optimum and distribution. demand and energy by							
MODULE -2	Power-System Economics	10 Hours							
Power-System Econ	omics:								
Financial Planning, T Economic Analysis, E Electrification Investr Tariffs.	echno – Economic Viability, Private Participation, Fin Economic Characteristics – Generation Units, Transmi nent, Total System Analysis, Credit - Risk Assessmen	nancial Analysis, ission, Rural it, Optimum Investment,							
Generation Expansi	on:								
Generation Capacity a Energy, Clean Coal T Power Plants.	and Energy, Generation Mix, Conventional Generation echnologies, Distributed Power Generation, Renovation	n Resources, Nuclear on and Modernization of							
At the end of the Mod	lule 2, students will be able to:								
• Discuss methors sector	ods to mobilize resources to meet the investment requi	rement for the power							
• Understand ec investment de	onomic appraisal to allocate the resources efficiently a cisions	and appreciate the							
• Discuss expan	sion of power generation and planning for system ene	rgy in the country							
MODULE-3	MODULE-3 Transmission & Distribution Planning: 08 Hours								
Transmission:									
Transmission Plannin Conductors, Sub – St	g Criteria, Right – of – Way, Network Studies, High – ations, Power Grid, Reactive Power Planning, Energy	- Voltage Transmission, Storage.							
Distribution:									
Distribution Darasula	tion Dianning Dringinlag Electricity Supply Dulag	Critaria and Standarda							

Distribution Deregulation, Planning Principles, Electricity – Supply Rules, Criteria and Standards, Sub – Transmission, Basic Network, Low Voltage Direct Current Electricity, Distribution(continued): Upgradation of Existing Lines and Sub – Stations, Network Development, System Studies, Urban Distribution, Rural Electrification, Villages Self – Sufficiency in Energy, Community Power, Self – Generation.

At the end of the Module 3, students will be able to:

- Evaluation of operating states of transmission system, their associated contingencies and the stability of the system.
- Discuss principles of distribution planning, supply rules, network development and the system studies

MODULE-4	10 Hours						
Reliability Models,	System Reliability, Reliability and Quality Planning, F	unctional Zones,					
Generation Reliabili	ty Planning Criteria, Transmission Reliability Criteria,	Distribution Reliability,					
Reliability Evaluation, Grid Reliability, Reliability Target, Security Requirement, Disaster							
Management, Qualit	y of Supply, Reliability and Quality Roadmap.						

At the end of the Module 4, students will be able to:

• Discuss reliability criteria for generation, transmission, distribution and reliability evaluation and analysis, grid reliability, voltage disturbances and their remedies

MODULE-5	Demand-Side Planning	10 Hours
----------	----------------------	----------

Demand-Side Planning:

Demand Response, Demand – Response Programmes, Demand– Response Technologies, Energy Efficiency, Energy - Economical Products, Efficient – Energy Users, Supply – Side Efficiency, Energy Audit.

Electricity Market:

Market Principles, Power Pool, Independent System Operator, Distribution System Operator, Power Balancing, Market Participants, Power Markets, Market Rules, Bidding, Trading, Settlement System, Locational Marginal Pricing, Transmission Charges, Merchant Power, Differential Electricity, Congestion Management, Ancillary Services, Hedging, Smart Power Market.

At the end of the Module 5, students will be able to:

• Discuss planning and implementation of electric –utility activities, market principles and the norms framed by CERC for online trading and exchange in the interstate power market.

Total hours: 48 hours

Term work:

1. Open book based exam

Content beyond syllabus:

1.

Self-Study:

Contents to promote self-Learning:

SNO	MODULE	Reference
1	Power System Regulation, Scenario Planning	https://www.nrel.gov/docs/fy08osti/42297.pdf
2	Modernization of Power Plants	https://www.powermag.com/history-of-power- plant-renovation-and-modernization-in- india/#:~:text=The%20GoI%20initiated%20a%20 new,the%20existing%20thermal%20power%20pla nts.
3	Reactive Power Planning	https://www.igi-global.com/dictionary/reactive- power-planning/63461
4	Reliability and Quality Roadmap	https://www.slideshare.net/ASQwebinars/reliabilit y-roadmap-using-quality-function-deployment
5	Smart Power Market	https://www.alliedmarketresearch.com/smart-energy- market-A09434

Text Book(s):

1. Electric Power Planning A. S. Pabla McGraw Hill, 2nd Edition, 2016

Online Resources:

- 1. https://www.nrel.gov/docs/fy08osti/42297.pdf
- 2. https://www.powermag.com/history-of-power-plant-renovation-and-modernizationin-

india/#:~:text=The%20GoI%20initiated%20a%20new,the%20existing%20thermal%20power%20plants.

- 3. https://www.igi-global.com/dictionary/reactive-power-planning/63461
- 4. https://www.slideshare.net/ASQwebinars/reliability-roadmap-using-quality-function-deployment
- 5. https://www.alliedmarketresearch.com/smart-energy-market-A09434

Web References:

1. https://nptel.ac.in/courses/108101040

NARAYANA ENGINEERING COLLEGE:NELLORE										
20EE4011]	Reactive 1	Power Con	mpensatio	on and Ma	nagemen	t	R2020		
	Н	rks								
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requi	site: Nil									
Course O	bjectives:									
• To	identify th	e necessity	y of reactiv	ve power o	compensati	on				
• To	describe lo	ad compe	nsation							
• To	select vari	ous types	of reactive	e power co	mpensatio	n in transn	nission sys	stems		
• To	contrast re	active pov	ver coordi	nation sys	tem					
• To	characteriz	ze distribu	tion side a	nd utility	side reactiv	ve power r	nanageme	nt.		
Course O	utcomes:	After suc	cessful co	mpletion	of the cou	irse, the st	tudent wil	l be able to:		
CO 1	Distingui	sh the imp	ortance of	f load con	pensation	in symmet	trical as we	ell as un		
	symmetri	cal loads	(BL-3)		-					
CO 2	Observe	various co	mpensatio	on method	s in transm	ission line	es (BL-2)			
CO 3	Construc	t model fo	r reactive	power coo	ordination	(BL-3)				
CO 4	Understa	nd the der	nand side	reactive po	ower mana	gement (E	BL-2)			
CO 5	Understa	nd the use	r side reac	tive powe	r managen	nent (BL-2	2)			

	CO-PO Mapping													
СО	PO PSO													50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2		2					2		2	1
CO2	3	3	2	2		2					2		3	2
CO3	3	3	2	2		2					2		2	2
CO4	3	3	2	2		2					2		3	3
CO5	3	3	2	2		2					2		2	1
				1	l: Lov	v, 2-M	ledium	n, 3- H	ligh					

COURSE CONTENT										
MODULE - 1Load Compensation10 Hours										
Objectives and specifications – reactive power characteristics – inductive and capacitive approximate biasing – Load compensator as a voltage regulator – phase balancing and power factor correction of unsymmetrical loads- examples.										
At the end of the Mod	ule 1, students will be able to:									
1. Distinguish t	he importance of load compensation in symmetrical a	s well as un symmetrical								
loads (BL-3)										
MODULE -2	Steady – State Reactive Power Compensation in	10 Hours								
	Transmission System									
Uncompensated line -	- types of compensation - Passive shunt and series and	d dynamic shunt								
compensation -examp	bles Transient state reactive power compensation in tra	ansmission systems:								
Characteristic time pe	riods – passive shunt compensation – static compensa	tions- series capacitor								
compensation – comp	ensation using synchronous condensers – examples									
At the end of the Module 2, students will be able to:										
1. Observe various compensation methods in transmission lines (BL-2)										
MODULE-3	Reactive Power Coordination	09 Hours								

Objective – Mathematical modeling – Operation planning – transmission benefits – Basic concepts of quality of power supply – disturbances- steady –state variations – effects of under voltages – frequency –Harmonics, radio frequency and electromagnetic interferences

At the end of the Module 3, students will be able to:

1. Construct model for reactive power coordination (BL-3)

MODULE-4	MODULE-4 Demand Side Management					
Load patterns – basic	c methods load shaping - power tariffs- KVAR based t	ariffs penalties for				
voltage flickers and I	Harmonic voltage levels Distribution side Reactive pow	ver Management::				
System losses –loss 1	eduction methods – examples – Reactive power planni	ng – objectives –				

Economics Planning capacitor placement – retrofitting of capacitor banks At the end of the Module 4, students will be able to:

1. Understand the demand side reactive power management (BL-2)

MODULE-5	User Side Reactive Power Management	09 Hours

KVAR requirements for domestic appliances – Purpose of using capacitors – selection of capacitors – deciding factors – types of available capacitor, characteristics and Limitations Reactive power management in electric traction systems and are furnaces: Typical layout of traction systems – reactive power control requirements – distribution transformers- Electric arc furnaces – basic operations- furnaces transformer –filter requirements – remedial measures –power factor of an arc furnace

At the end of the Module 5, students will be able to:

1. Understand the user side reactive power management (BL-2)

Total hours: 48 hours

Term work:								
1.								
Content beyon	d syllabus:							
1. Modern t	ool usage to analyze the rea	active power in power system						
Self-Study:								
Contents to p	romote self-Learning:							
SNO	MODULE	Reference						

SNO	MODULE	Reference
1	power factor correction of	http://ethesis.nitrkl.ac.in/6395/1/E-8.pdf
	unsymmetrical loads	
2	series capacitor	https://circuitglobe.com/series-compensation.html
3	radio frequency and	https://en.wikipedia.org/wiki/Electromagnetic_inte
5	electromagnetic	rference
	interferences	licicie
4	retrofitting of	https://www.theelectricalguy.in/tutorials/5-types-
	capacitor banks	of-power-factor-correction-capacitor-bank-
		locations/
5	power factor of an arc	https://www.ijert.org/research/power-quality-
	furnace	improvement-in-electric-arc-furnace-
		IJERTV4IS040198.pdf

Text Book(s):

• Reactive power control in Electric power systems by T.J.E. Miller, John Wiley and sons, 1982.

• Reactive power Management by D. M. Tagare, Tata McGraw Hill, 2004.

Reference Book(s):

• Wolfgang Hofmann, Jurgen Schlabbach, Wolfgang Just "Reactive Power Compensation: A Practical Guide, April, 2012, Wiely publication.

Online Resources:

- 1. http://ethesis.nitrkl.ac.in/6395/1/E-8.pdf
- 2. https://circuitglobe.com/series-compensation.html
- 3. https://en.wikipedia.org/wiki/Electromagnetic_interference
- 4. https://www.theelectricalguy.in/tutorials/5-types-of-power-factor-correction-capacitor-bank-locations/
- 5. https://www.ijert.org/research/power-quality-improvement-in-electric-arc-furnace-IJERTV4IS040198.pdf

Web References:

1. https://www.youtube.com/watch?v=OR5Fdfh9Hbw

NARAYANA ENGINEERING COLLEGE:NELLORE											
20EE4016			POW	ER QUA	LITY			R2020			
	H	ours / Wee	ek	Total	Credit		Max Mar	`ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requi	Pre-requisite: Nil										
Course O	bjectives:										
1. Pov	wer quality	issues and	d standard	s.							
2. The	e sources o	f power q	uality distu	irbances a	nd power t	ransients (that occur	in power			
sys	tems.										
3. The	e sources o	f harmoni	es, harmor	nic indices	, Devices f	for control	ling harmo	onic			
dist	ortion.										
4. The	e principle	of operati	on of DVF	R and UPQ	C.						
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	irse, the st	tudent wil	l be able to:			
CO 1	Address J	power qua	lity issues	to ensure	meeting of	f standards	s (BL-2)				
CO 2	Apply the devices (1	e concepts BL-3)	of compe	nsation for	sags and	swells usin	ng voltage	regulating			
CO 3	Assess ha	rmonic di	stortion ar	nd its mitig	gation. (BI	L-4)					
CO 4	Understa	nd the pow	ver measu	rement dat	a accordin	g to stand	ards (BL-2	2)			
CO 5	Analyze	the power	quality im	provemen	t with cust	om power	devices (I	3L-4)			

	CO-PO Mapping														
CO	PO													PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	2	2									2	1	
CO2	3	3	2	2									3	2	
CO3	3	3	2	2	2								2	2	
CO4	3	3	2	2	2								3	3	
CO5	3	3	2	2	2								2	1	
				-	l: Lov	v, 2-M	lediun	n, 3- H	ligh						

COURSE CONTENT											
MODULE – 1	MODULE – 1 INTRODUCTION 10 Hours										
Definition of Power (Definition of Power Quality- Power Quality Terminology – Classification of Power Quality Issues-										
Magnitude Versus Du	ration Plot - Power Quality Standards - Responsibiliti	es of Suppliers and Users									
of Electric Power-CB	EMA and ITI Curves.										
At the end of the Mod	lule 1, students will be able to:										
1. Address powe	r quality issues to ensure meeting of standards (BL-2)										
MODULE -2	TRANSIENTS, SHORT DURATION AND	10 Hours									
	LONG DURATION VARIATIONS										
Categories and Chara	cteristics of Electromagnetic Phenomena in Power Sys	stems- Impulsive and									
Oscillatory Transients	s-Interruption - Sag-Swell-Sustained Interruption - Un	der Voltage – Over									
Voltage–Outage. Sou	rces of Different Power Quality										
Disturbances- Princip	les of Regulating the Voltage- Conventional Devices	for Voltage Regulation.									
At the end of the Mod	lule 2, students will be able to:										
1. Apply the	concepts of compensation for sags and swells using v	oltage regulating									
devices (BL	-3)										
MODULE-3	FUNDAMENTALS OF HARMONICS &	09 Hours									
	APPLIED HARMONICS										

Harmonic Distortion, Voltage Versus Current Distortion, Harmonics Versus Transients, Power System Quality Under Non Sinusoidal Conditions, Harmonic Indices, Harmonic Sources from Commercial Loads, Harmonic Sources from Industrial Loads. Applied

Harmonics: Effects Of Harmonics, Harmonic Distortion Evaluations, Principles of Controlling Harmonics, Devices for Controlling Harmonic Distortion.

At the end of the Module 3, students will be able to:

1. Assess harmonic distortion and its mitigation. (BL-4)

MODULE-4	POWER QUALITY MONITORING	10 Hours
-----------------	--------------------------	----------

Power Quality Benchmarking-Monitoring Considerations- Choosing Monitoring Locations-Permanent Power Quality Monitoring Equipment-Historical Perspective of Power Quality Measuring Instruments- Power Quality Measurement Equipment-Types of Instruments- Assessment of Power Quality Measurement Data- Power Quality Monitoring Standards.

At the end of the Module 4, students will be able to:

1. Understand the power measurement data according to standards (BL-2)

MODULE-5	POWER QUALITY ENHANCEMENT USING	09 Hours
	CUSTOM POWER DEVICES	

Introduction to Custom Power Devices-Network Reconfiguring Type: Solid State Current Limiter (SSCL)-Solid State Breaker (SSB) -Solid State Transfer Switch (SSTS) - Compensating Type: Dynamic Voltage Restorer (DVR)-Unified Power Quality Conditioner(UPQC)-Principle of Operation Only.

At the end of the Module 5, students will be able to:

1. Analyze the power quality improvement with custom power devices (BL-4)

Total hours: 48 hours

Term work:

1.

Content beyond syllabus:

1. AI based power quality improvement methods.

Self-Study:

Contents to promote self-Learning:

SNO	MODULE	Reference
1	Responsibilities of	https://pure.tue.nl/ws/files/2804575/712690.pdf
	Suppliers and Users of	
	Electric Power	
2	Conventional Devices	https://www.electrical4u.com/voltage-regulator/
	for Voltage	
	Regulation	
3	Devices for	https://www.brainkart.com/article/Devices-for-
	Controlling Harmonic	Controlling-Harmonic-Distortion 11725/
	Distortion	
4	Power Quality	https://www.engineeringenotes.com/electrical-
	Monitoring Standards	engineering/power-quality/standards-for-
		monitoring-power-quality-electricity/32560
5	Custom Power	https://www.ripublication.com/irph/ijeee_spl/ijeeev7
	Devices	n7_11.pdf
	1	

Text Book(s):

1. Electrical Power Systems Quality, Roger C. Dugan, Mark F. McGranaghan, Surya Santoso, H.Wayne Beaty, Mc Graw Hill Education (India) Pvt. Ltd., 3rd Edition, 2012.

2. Power quality, C. Sankaran, CRC Press, 2001.

Reference Book(s):

1. Understanding Power quality problems – Voltage Sags and Interruptions, Math H. J. Bollen IEEE Press Series on Power Engineering, WILEY, 2007.

2. Power quality – VAR Compensation in Power Systems, R. Sastry Vedam, Mulukutla S.

Sarma, CRC Press, 2009, First Indian Reprint 2013.

3. Fundamentals of Electric Power Quality, Surya Santoso, Create Space, 2012.

Online Resources:

- 1. https://pure.tue.nl/ws/files/2804575/712690.pdf
- 2. https://www.electrical4u.com/voltage-regulator/
- 3. https://www.brainkart.com/article/Devices-for-Controlling-Harmonic-Distortion_11725/
- 4. https://www.engineeringenotes.com/electrical-engineering/power-quality/standards-for-monitoring-power-quality-electricity/32560
- 5. https://www.ripublication.com/irph/ijeee_spl/ijeeev7n7_11.pdf

Web References:

1. https://onlinecourses.nptel.ac.in/noc21_ee103/preview

	NARAYANA ENGINEERING COLLEGE:NELLORE												
20EE4021	SMART GRID TECHNOLOGIES R2020												
	Н	ours / We	ek	Total	Credit		Max Mar	Marks					
	L	Т	Р	hrs	С	CIE	SEE	TOTAL					
	3	0	0	48	3	40	60	100					
Pre-requisite: Nil													
Course O	bjectives:												
• To	understand	d various a	aspects of	smart grid									
• To	study varie	ous smart	transmissi	on and dis	tribution te	echnologie	s						
• To	appreciate	distributi	on generat	ion and sr	nart consur	nption							
• To	know the	regulation	s and mark	ket models	for smart	grid							
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	irse, the st	tudent wil	l be able to:					
CO 1	Understa	nd techno	logies for	smart grid	(BL-2)								
CO 2	Understa	nd the sm	art transmi	ission syst	em and its	technolog	ies (BL-2)						
CO 3	Understa	nd the sm	art distribu	ition syste	m and its to	echnologie	es (BL-2)						
CO 4	Realize t	he distribu	ition gener	ration and	smart cons	umption (BL-3)						
CO 5	Know the	e regulatio	ons and ma	rket mode	ls for smar	t grid (BL	2)						

	CO-PO Mapping														
СО	PO													PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	3	3	2		2	2						2	1	
CO2	3	3	3	2		2	2						3	2	
CO3	3	3	3	2		2	2						2	2	
CO4	3	3	3	2		2	2	2					3	3	
CO5	3	3	3	2		2	2	2					2	1	
					1: Lov	v, 2-M	Iediun	1, 3- H	ligh						

	COURSE CONTENT								
MODULE – 1	Introduction to Smart Grids	10 Hours							
Definition, justification for smart grids, smart grid conceptual model, smart grid architectures, interoperability, communication technologies, role of smart grids standards, intelligrid initiative, national smart grid mission (NSGM) by Govt. of India									
At the end of the Mod 1. Understand	At the end of the Module 1, students will be able to: 1. Understand technologies for smart grid (BL-2)								
MODULE -2	Smart Transmission Technologies	10 Hours							
Substation automation system (EMS), phasor	Substation automation, Supervisory control and data acquisition (SCADA), energy management system (EMS), phasor measurement units (PMU), Wide area measurement systems (WAMS)								
At the end of the Module 2, students will be able to:									
1. Understan	d the smart transmission system and its technologies ((BL-2)							

MODULE-3	Smart Distribution Technologies	09 Hours
Distribution automat metering infrastructu	ion, outage management systems, automated meter rea are (AMI), fault location isolation and service restoration	ding (AMR), automated on (FLISR), Outage
Management System	ns (OMS), Energy Storage, Renewable Integration	-
At the end of the Mc	dule 3, students will be able to:	
1. Understand	d the smart distribution system and its technologies (BI	L-2)
MODULE-4	Distributed Generation and Smart Consumption	10 Hours
Distributed energy re homes / buildings, ho Vehicle to Grid V2C	esources (DERs), smart appliances, low voltage DC (L' ome energy management system (HEMS), Net Meterin , Solar to Grid, Microgrid	VDC) distribution in g, Building to Grid B2G,
At the end of the Mo	dule 4, students will be able to:	
1. Realize the	distribution generation and smart consumption (BL-3)	
MODULE-5	Regulations and Market Models for Smart Grid	09 Hours
Demand Response, 7 Consumer privacy an projects.	Fariff Design, Time of the day pricing (TOD), Time of ad data protection, consumer engagement etc. Cost ben	use pricing (TOU), efit analysis of smart grid
At the end of the Mc	dule 5, students will be able to:	
1. Know the re	egulations and market models for smart grid (BL-2)	
	Tota	al hours: 48 hours

Content beyond syllabus:

1. Cost Estimation of Smart Gird in India

Self-Study:

Contents to promote self-Learning:

SNO	MODULE	Reference
1	National smart grid mission (NSGM) by Govt. of India	https://www.nsgm.gov.in/#:~:text=NSGM%20Est ablishment,January%202016%20with%20dedicate d%20team.
2	Wide area measurement systems (WAMS)	https://www.energy.gov/sites/default/files/oeprod/ DocumentsandMedia/8-Securing_WAMS.pdf
3	Renewable Integration	https://www.energy.gov/oe/services/technology- development/renewable-energy-integration
4	Home energy management system (HEMS)	https://www.osti.gov/servlets/purl/1423114
5	Cost benefit analysis of smart grid projects	https://www.slideshare.net/sustenergy/multicriteria- and-cost-benefit-analysis-for-smart-grid-projects

Text Book(s):

- 1. Clark W Gellings, "The Smart Grid, Enabling Energy Efficiency and Demand Side Response"- CRC Press, 2009.
- 2. Jean Claude Sabonnadière, Nouredine Hadjsaïd, "Smart Grids", Wiley-ISTE, IEEE Press, May 2012

Reference Book(s):

- Janaka Ekanayake, Kithsiri Liyanage, Jianzhong. Wu, Akihiko Yokoyama, Nick Jenkins, "Smart Grid: Technology and Applications"- Wiley, 2012.
- James Momoh, "Smart Grid: Fundamentals of Design and Analysis" Wiley, IEEE Press, 2012.

Online Resources:

- 1. https://www.nsgm.gov.in/#:~:text=NSGM%20Establishment,January%202016%20w ith%20dedicated%20team.
- 2. https://www.energy.gov/sites/default/files/oeprod/DocumentsandMedia/8-Securing_WAMS.pdf
- 3. https://www.energy.gov/oe/services/technology-development/renewable-energy-integration
- 4. https://www.osti.gov/servlets/purl/1423114
- 5. https://www.slideshare.net/sustenergy/multicriteria-and-cost-benefit-analysis-for-smartgrid-projects

Web References:

1. India Smart Grid Knowledge Portal

	NARAYANA ENGINEERING COLLEGE:NELLORE											
20EE4002			System Mod	delling and I	dentification			R2020				
	I	Hours / Wee	k	Total hrs	Credit		Max Mar	rks				
	L	Т	Р		С	CIE	ACS	TOTAL				
	3	0	0	48	3	40	60	100				
Pre-requisit	e: Nil											
Course Obj	ectives:											
1.To Underst	tand the Mod	delling of D	namic Syste	ems								
2 To Underst	tand the Stal	bility margir	ns, correlatio	n of frequen	cy domain a	nd time dom	ain					
3. To Unders	stand the Co	ncepts of lir	ear sampled	data system	S							
4. To Unders	stand the con	mputation Z	L-transform									
5. To Unders	stand the con	mpensation	in Z domair	n and W pla	ne							
Course Out	comes: Afte	r successful	completion	n of the cou	rse, the stud	ent will be	able to:					
CO 1	Learn the	design of M	Iodelling of I	Dynamic Sys	stems							
CO 2	Analyze the Stability margins, correlation of frequency domain and time domain											
CO 3	Analyse linear sampled data systems											
CO 4	Learn the computation Z-transform											
CO 5	Understand	d the compe	nsation in Z	domain and	l W plane							

	CO-PO Mapping													
СО		PO PSO												
1	РО	РО	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1										1	1
CO2	3		1										1	1
CO3	1	2												1
CO4	1	2	1										1	1
CO5	1		2											2
					1: Lo	w, 2-N	ledium	, 3- Hig	gh					

COURSE CONTENT MODULE – 1

Modelling of Dynamic Systems

State variable Modelling of Continuous Dynamic Systems.

Solution methods for Nonlinear Differential equations. Bond Graph Techniques.

At the end of the Module 1, students will be able to:

- 1. Understand the importance of State variable approach
- 2. Analyze Nonlinear Differential equations

MODULE -2

Classical control theory:

Review of classical control theory: Stability margins, correlation of frequency domain and time domain parameters, design specifications, compensation of continuous systems, actuator selection and design.

State variable modelling of linear continuous systems, controllability and observability

At the end of the Module 2, students will be able to:

- 1. Understand the Stability margins
- Analyze correlation of frequency domain and time domain parameters, design 2. 3.
 - Understand the concepts of controllability and observability

MODULE-3

Concepts of linear sampled data systems: Discrete equivalents of continuous data systems, reconstruction of sampled signals, sample and 0 order holds, stability of linear sampled data systems.

State variable modelling of linear discrete data systems, controllability and observability.

At the end of the Module 3, students will be able to:

- 1. Analyze stability of linear sampled signals.
- 2. Understand the State variable modelling of linear discrete data systems

MODULE-4

Digital Control Theory: I

Review of Z-transform. Computation of time response of Discrete Data system. Bilinear Transformation. W-plane, prewarping, inverse transformation. Design of discrete controllers.

At the end of the Module 4, students will be able to:

- 1. Understand the Z-transform & Bilinear Transformation
- 2. Analyze the design of discrete controllers

MODULE-5

Digital Control Theory: II

Z-domain compensation, w-plane compensation, state variable feedback, deadbeat controller sampled data version of PID controllers. Effect of Data Digitization. Effect of finite word size, limit cycle Determination.

At the end of the Module 5, students will be able to:

- 1. Analyze compensations in Z domains, W domains
- 2. Understand the concepts of controllers

Total hours: 50 hours

Term work:

Assignments followed by quizzes

Content beyond syllabus:

Simulation Software. Skeletal Structure of Simulation software

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Bond Graph Techniques	CO1	https://researchonline.gcu.ac.uk/ws/portalfiles/portal/3218404/
			bond_graph_modeling_postprint.pdf
2	State variable modelling	CO2	https://www.ijert.org/state-variable-analysis-of-continuous-
	of linear continuous systems		time-systems
3	controllability and observability	CO3	https://www.ece.rutgers.edu/~gajic/psfiles/chap5traCO.pdf
4	W-plane, prewarping	CO4	https://en.wikibooks.org/wiki/Digital_Signal_Processing/Bilin
			ear_Transform
5	Effect of finite word size	CO5	http://www.dsp-book.narod.ru/DSPMW/03.PDF

Text Book(s):

1. G.P. Rao, "Identification of continuous-time systems" suggested by Kranthi Deveerasetty (Entry level)

2. Modeling & Identification of Dynamic Systems Hardcover – Import, 23 August 2016 by Lennart Ljung (Author), Torkel Glad (Author)

3. K. P. Mohandas, "Modern Control Engineering", Sanguine Technical Publishers, 2006.

Reference Book(s):

 Highlights of system identification provided by Manuel De la Sen.
 Heij, A.C.M. Ran, F. van Schagen, "Introduction to Mathematical Systems Theory: Linear Systems, Identification and Control" suggested by Mahmood Dadkhah
 System Identification: An Introduction Book by Karel J. Keesman

Online Resources:

1. https://ptolemy.berkeley.edu/books/Systems/PtolemyII_DigitalV1_02.pdf

Web Resources:

1. <u>https://hal.archives-ouvertes.fr/hal-00718864/document</u>

2. https://www.mathworks.com/help/ident/gs/about-system-identification.html

	NARAYANA ENGINEERING COLLEGE:NELLORE											
20EE4007		А	DVANCEI) CONTRO	L SYSTEM	IS		R2020				
	H	Hours / Weel	ĸ	Total hrs	Credit		Max Mar	Iarks				
	L	Т	Р		С	CIE	ACS	TOTAL				
	3	0	0	48	3	40	60	100				
Pre-requisit	e: Nil											
Course Obj	ectives:											
1.	To Underst	and state fe	edback cont	rol and state	observer							
2.	To Underst	tand the pha	se plane ana	alysis								
3.	To Underst	tand the Ana	alysis of des	cribing func	tions with n	on-linearitie	es					
4.	To Underst	and the des	ign of optim	al controller								
5.	To Underst	and the desi	gn of optima	al estimator i	including Ka	alman Filter,	Lyapunov's	Stability				
			-		•		• •	•				
Course Out	comes: Afte	r successful	completion	n of the cou	rse, the stud	lent will be	able to:					
CO 1	Learn the	design of sta	te feedback	controller ar	nd state obse	rver						
CO 2	Analyze th	ne linear and	nonlinear s	ystems using	phase plan	e method.						
CO 3	Analyse no	onlinear system	ems using de	escribing fun	ction metho	od						
CO 4	Learn the	Learn the optimal control problem										
CO 5	Understand	the Solutio	n of Kalmar	n Filter by du	ality princip	ple, Direct m	ethod of Lyp	anov for				
	Linear and	Nonlinear c	ontinuous ti	me autonom	ous systems							

	CO-PO Mapping													
СО		PO PSO												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1										1	2
CO2	3		1										1	1
CO3	1	2												1
CO4	2	2	3										1	2
CO5	2		1											2
					1: Lo	w. 2-N	ledium	. 3- Hig	rh					

COURSE CONTENT MODULE – 1

STATE VARIABLE DESIGN:

Introduction to state model: Effect of state feedback - Pole placement design: Necessary and sufficient condition for arbitrary pole placement, State regulator design - Design of state observers- Separation principle- Design of servo systems: State feedback with integral control

At the end of the Module 1, students will be able to:

- 1. Understand the importance of State variable approach
- 2. Analyze the state observers and pole placement
- 3. Develop the State feedback with integral control

MODULE -2

PHASE PLANE ANALYSIS:

Features of linear and non-linear systems - Common physical non-linearities – Phase plane method: Basic concept, Singular points, Limit cycles, Phase trajectories - Construction of phase trajectories of linear and non-linear systems: Analytical method, Isocline method.

At the end of the Module 2, students will be able to:

- 1. Understand the Features of linear and non-linear systems
- 2. Implement the Phase plane method
- 3. Understand the Construction of phase trajectories of linear and non-linear systems

MODULE-3

DESCRIBING FUNCTION ANALYSIS:

Basic concepts, Derivation of describing functions for common non-linearities: Dead zone, Saturation, Relay, Hysteresis, Backlash – Describing function analysis of non-linear systems, Limit cycles, Stability of oscillations.

At the end of the Module 3, students will be able to:

- 1. Derive the describing functions for common non-linearities.
- 2. Understand the concept of Stability of oscillations

MODULE-4

OPTIMAL CONTROL:

Introduction: Classical control and optimization, formulation of optimal control problem, Typical optimal control performance measures - Optimal state regulator design: Lyapunov equation, Matrix Riccati equation - LQR steady state optimal control – Application examples.

At the end of the Module 4, students will be able to:

- 1. Understand the formulation of optimal control problem
- 2. Analyze the optimal control performance measures
- 3. Understand the Lyapunov and Matrix Riccati equations

MODULE-5

OPTIMAL ESTIMATION:

Introduction: Discrete systems - Optimal estimation: Kalman Filter, Kalman Bucy Filter, Solution by duality principle - Application examples.

STABILITY ANALYSIS:

Stability in the sense of Lyapunov, Lyapunov's stability and Lypanov's instability theorems. Direct method of Lypanov for the Linear and Nonlinear continuous time autonomous systems.

At the end of the Module 5, students will be able to:

- 1. Analyze the operation of Kalman and Kalman Bucy Filter
- 2. Understand the Solution by duality principle
- 3. Understand the Direct method of Lypanov for autonomous systems.

Total hours: 50 hours

Term work:

Assignments followed by quizzes

Content beyond syllabus:

Real-time Embedded Control Systems

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	CO	Reference
1	state feedback controller	CO1	https://nptel.ac.in/content/storage2/courses/108103008/PDF/mod
	and state observer		<u>ule9/m9_lec3.pdf</u>
2	linear and nonlinear	CO2	https://nptel.ac.in/courses/108/106/108106162/
	systems using phase		
	plane method		
3	Analysis of describing	CO3	https://people.unica.it/eliousai/files/2015/10/Describing-
	functions with non-		Function-analysis-v1.pdf
	linearities		
4	Optimal control problem	CO4	https://nptel.ac.in/courses/108/105/108105019/#
5	Solution of Kalman	CO5	https://nptel.ac.in/content/storage2/courses/101108047/module15
	Filter by duality		/Lecture%2040.pdf
	principle		https://nptel.ac.in/courses/101/108/101108047/

Text Book(s):

- 1. M.Gopal, "Digital Control and State Variable Methods", 4th edition, Mc Graw Hill India, 2012
- 2. K. Ogata, 'Modern Control Engineering', 5th Edition, Pearson, 2012
- 3. K. P. Mohandas, "Modern Control Engineering", Sanguine Technical Publishers, 2006.

Reference Book(s):

1. William S Levine, "Control System Fundamentals," The Control Handbook, CRC Press, Tayler and Francies Group, 2011.

2. M.Gopal, Modern Control System Theory, 3rd edition, New Age International Publishers, 2014

Online Resources:

1. https://b-ok.asia/book/1193802/dec93b

2. https://b-ok.asia/book/459450/7e89ab

Web Resources:

1. https://www.youtube.com/watch?v=bbm79-UcNN0&list=PLbMVogVj5nJTNkhtkCEKQHhPOr2bpS3za

2. https://www.youtube.com/watch?v=DSvBXXnZv34&list=PLUY5PVaLSLNEKzeQv13ZevTL5AhnQOkWX

		NARAY	ANA ENGI	NEERING (COLLEGE:	NELLORE						
20EE4012			Digital S	Signal Pr	ocessing			R2020				
				r								
	I	Hours / Wee	k	Total hrs	Credit		Max Mar	ks				
	L	Т	Р		С	CIE	ACS	TOTAL				
	3	0	0	48	3	40	60	100				
Pre-requisit	e: Nil											
Course Obj	ectives:	tives:										
1.	To Underst	fo Understand Discrete-time signals and systems & properties										
2.	To Underst	and z-Trai	nsform, inver	rse z- Transf	orm & prope	erties						
3.	To Underst	tand the des	ign of low pa	ass, high pas	s, band pass	& stop band	l IIR digital	filters				
4.	To Underst	and Compu	ter aided des	sign of Equir	ipple Linear	phase FIR f	filters					
5.	To Underst	tand arithme	etic round of	f errors, Low	sensitivity	digital filters	8					
Course Out	comes: Afte	r successful	completion	n of the cou	rse, the stud	ent will be	able to:					
CO 1	Understand	1 Discrete-t	ime signals a	and systems	& properties							
CO 2	Analyze th	e z- Transf	orm, inverse	z-Transform	n & properti	es						
CO 3	Understand the design of low pass, high pass, band pass & stop band IIR digital filters											
CO 4	Learn Con	puter aided	design of Ec	luiripple Lin	ear phase FI	R filters						
CO 5	Understand	l arithmetic	round off err	ors, Low ser	nsitivity digi	tal filters.						

	CO-PO Mapping													
СО		PO PSO												
	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	1										1	2
CO2	1		3										1	2
CO3	2	2												1
CO4	2	1	3										1	2
CO5	2		1											2
	1: Low, 2-Medium, 3- High													

COURSE CONTENT MODULE – 1

Short introduction, Analog to digital and Digital to Analog conversion, sampled and Hold circuit, Continuous time Fourier Transforms. Discrete-time signals and systems, Discrete-time Fourier transform- its properties and applications, Fast Fourier Transform (in time-domain and Frequency domain), IDFT and its properties.

At the end of the Module 1, students will be able to:

- 1. Understand Analog to digital and Digital to Analog conversion
- 2. Analyze Discrete-time signals & Continuous time Fourier Transforms

MODULE -2

z- Transforms

Definition and properties, Rational z-transforms, Region of convergence of a rational z- Transform, The inverse z-Transform, Z-Transform properties, Computation of the convolution sum of finite length sequences, The transfer function

Digital Filter Structures: Block Diagram representation, Equivalent structures, Basic FIR Digital Filter structures, Basic IIR Digital Filter structures, Realization of Basic structures using MATLAB, All pass filters, Computational complexity of Digital filter structures.

At the end of the Module 2, students will be able to:

- 1. Understand the Digital Filter structures
- 2. Able to Compute of the convolution sum of finite length sequences
- 3. Able to form Basic structures using MATLAB

MODULE-3

IIR Digital Filter Design:

Preliminary considerations, Bilinear transformation method of IIR Filter design, Design of low pass IIR Digital filters, Design of High pass, Band pass and band stop IIR digital filters, Spectral Transformations of IIR filter, IIR digital filter design using MATLAB, Computer aided design of IIR digital filters.

At the end of the Module 3, students will be able to:

- 1. Able to design Computer aided IIR digital filters
- 2. Understand the concept Bilinear transformation

MODULE-4

FIR Digital Filter Design:

Preliminary considerations, FIR filter design based on windowed Fourier series, Computer aided design of Equiripple Linear phase FIR filters, Design of Minimum phase FIR filters, FIR digital filter design using MATLAB, Design of computationally efficient FIR digital filters.

At the end of the Module 4, students will be able to:

- 1. Understand the concept of windowed Fourier series
- 2. Analyze the Design of Minimum phase FIR filters

MODULE-5

Analysis of Finite word length effects:

The quantization process and errors, quantization of Fixed point numbers, Quantization of floating point numbers, Analysis of coefficient quantization effects, Analysis of arithmetic round off errors, Low sensitivity digital filters, Reduction of product round off errors using error feedback, Round off errors in FFT algorithms. The basic sample rate alteration devices, Multi rate structures for sampling rate conversion, Multistage design of decimator and interpolator, The Poly phase decomposition, Arbitrary-rate sampling rate converter.

At the end of the Module 5, students will be able to:

- 1. Analyze the coefficient quantization effects
- 2. Understand the Multi rate structures for sampling rate conversion
- 3. Understand the Multistage design of decimator and interpolator.

Total hours: 50 hours

Term work:

Assignments followed by quizzes

Content beyond syllabus:

Nyquist Filters and some applications of digital signal processing.

Self-Study:

Contents to promote self-Learning:

	1 0	1	
SNO	Торіс	CO	Reference
1	Discrete-time Fourier transform- its properties	CO1	https://cnx.org/contents/KilsjSQd@10.18:AMguPRIV@11/Properties-of-the-DTFT
2	Basic FIR Digital Filter structures	CO2	https://www.ni.com/docs/en-US/bundle/labview-2014-digital- filter-design-toolkit-api- ref/page/lvdfdtconcepts/fir_filter_specs.html
3	Computer aided design of IIR digital filters.	CO3	https://www.tutorialspoint.com/digital_signal_processing/dsp_computer_aided_design.htm
4	Design of Minimum phase FIR filters	CO4	https://www.dsprelated.com/freebooks/filters/Minimum_Phase_F ilters.html
5	Analysis of arithmetic round off errors	CO5	https://en.wikipedia.org/wiki/Round-off_error

Text Book(s):

1. S.K. Mitra, Digital Signal Processing-, Tata McGraw-Hill, Third Edition, 2006.

2. B.P. Lathi, Principle of Signal Processing and Linear Systems-, Oxford International Student Version, 2009

3. M. Mondal and A Asif, Continuous and Discrete Time Signals and Systems, Cambridge, 2007

Reference Book(s):

1. Li Tan, Digital Signal Processing- Fundamentals and Applications-, Indian reprint, Elsevier, 2008.

2. Alan V. Oppenheim, Ronald W. Schafer, and John R.Buck, Discrete- Time Signal Processing-, Pearson Edu, 2008.

Online Resources:

1. https://www.tutorialspoint.com/digital_signal_processing/dsp_unstable_systems.htm

2.softwaretestinghelp.com/digital-signal-processing-tutorial/

Web Resources:

1. https://www.youtube.com/watch?v=6dFnpz_AEyA

2. https://www.youtube.com/watch?v=JpHXMcDxNiA

3.https://www.youtube.com/watch?v=p8cina5Ke_c

	NARAYANA ENGINEERING COLLEGE:NELLORE									
20EE4017		MUI	LTIVARIA	BLE CONT	ROL SYST	EMS		R2020		
]	Hours / Weel	ĸ	Total hrs	Credit	Max Marks				
	L	Т	Р		С	CIE	ACS	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requisite: Nil										

Course Objectives:

1. To Understand Multivariable Connections, Multivariable Representation

2. To Understand Performance Specification in Multivariable Systems

3. To Understand Stability of Multivariable Feedback

4. To Understand Controllability and Observability and Realization in Multivariable Systems

5. To Understand Multivariable Control System Design

Course Outcomes: After successful completion of the course, the student will be able to:							
CO 1	Learn the Multivariable Connections, Multivariable Representation						
CO 2	Analyze the Performance Specification in Multivariable Systems.						
CO 3	Analyse Stability of Multivariable Feedback						
CO 4	Learn the Controllability and Observability and Realization in Multivariable Systems						
CO 5	Understand the Multivariable Control System Design						

	CO-PO Mapping													
СО		PO PSO												
	РО	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1										1	2
CO2	3		1										1	1
CO3	1	2												1
CO4	2	2	3										1	2
CO5	2		1											2
					1: Lo	w, 2-M	ledium	, 3- Hig	<u>gh</u>					

COURSE CONTENT MODULE – 1

Introduction in Multivariable Control Systems:

Multivariable Connections, Multivariable Representation

Poles and Zeros in Multivariable Systems : Multivariable Poles and Zeros, Direction of Poles and Zeros, Smith-McMillan Form, Matrix Fraction Description, Transmission Zero Assignment

At the end of the Module 1, students will be able to:

1. Understand the Multivariable Control Systems

2. Analyze the Transmission Zero Assignment

MODULE -2

Performance Specification in Mulivariable Systems and Their Limitations:

A Brief Review of Linear Control System, Scaling and Performance, Shaping Closed-loop Transfer Function, Fundamental Limitation on Performance

At the end of the Module 2, students will be able to:

- 1. Understand the Performance Specification in Mulivariable Systems
- 2. Understand the Limitations

MODULE-3

Stability of Multivariable Feedback Control Systems: Well-Posedness of Feedback Loop, Internal Stability, The Nyquist Stability Criterion, Co-prime Factorization over Stable Transfer Functions, Stabilizing Controllers, Strong and Simultaneous Stabilization

At the end of the Module 3, students will be able to:

- 1. Understand the concept of Stabilizing Controllers
- 2. Understand the concept of Stability

MODULE-4

Controllability and Observability and Realization in Multivariable Systems:

Controllability and Observability, Output Controllability, Realization, Model Order Reduction

At the end of the Module 4, students will be able to:

- 1. Understand the concept of Controllability and Observability
- 2. Analyze the Realization techniques

MODULE-5

Multivariable Control System Design: Sequential Loop Closing, Characteristic-Locus Method, PI Controller for MIMO Systems ,Decoupling, Diagonal Controller, Nyquist-Array Method

At the end of the Module 5, students will be able to:

- 1. Analyze the Sequential Loop Closing
- 2. Understand the Decoupling, Diagonal Controllers

Total hours: 50 hours

Term work:

Assignments followed by quizzes

Content beyond syllabus:

Robust stability and performance analysis via integral quadratic constraints.

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Multivariable Control Systems	CO1	https://www.youtube.com/watch?v=mMtFuYeJp5A
2	Scaling and Performance ns	CO2	https://www.dynatrace.com/news/blog/performance-vs- scalability/
3	Stability of Multivariable Feedback Control Systems	CO3	https://www.sciencedirect.com/topics/engineering/multivariab le-control-systems
4	Model Order Reduction	CO4	https://www.hindawi.com/journals/sv/2021/6631180/
5	Controllability and Observability and Realization in Multivariable Systems	CO5	http://profsite.um.ac.ir/~karimpor/multi/Multivariable_lec5.pdf

Text Book(s):

1.Multivariable Control Systems: An Engineering Approach (Advanced Textbooks in Control and Signal Processing) 2004th Edition, Kindle Edition by <u>Pedro Albertos</u> (Author), <u>Sala</u> <u>Antonio (Author) Format: Kindle Edition</u>

Reference Book(s):

1. Multivariable Feedback Control - Analysis and Design 2e (English, Paperback, Skogestad S)

Online Resources:

1. https://research.iaun.ac.ir/pd/mahmoodian/pdfs/UploadFile_3352.pdf

Web Resources:

1. https://research.iaun.ac.ir/pd/mahmoodian/pdfs/UploadFile_3352.pdf

	NARAYANA ENGINEERING COLLEGE:NELLORE									
20EE4022		RE	CAL TIME	CONTRO	CONTROL SYSTEMS					
	H	Iours / Weel	ĸ	Total hrs	Credit		Max Mar	arks		
	L	Т	Р		С	CIE	ACS	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requisit	Pre-requisite: Nil									
Course Obj	ectives:									
1.	To Underst	and Real -	time systems	8						
2.	To Underst	and Hierarc	hical represe	entation of c	omplex DES	5				
3.	To Understand Real - time Operating Systems, Interrupts									
4.	To Understand Real – time Programming.									
5.	To Underst	and Real -	time process	and applic	ations					
Course Out	comes: After	r successful	completion	n of the cou	rse, the stud	lent will be	able to:			
CO 1	Analyze th	e Characteri	stic features	of RT applie	cations and o	levelop featu	ares from No	on - RT and Off		
	- line system	m								
CO 2	Understand	l the Hierard	chical repres	entation and	analyzing I	Logical prop	erties			
CO 3	Derive the Example of checking safety and timing properties and also understand the									
	Requirements and features of real - time Computing Environments									
CO 4	Understand and analyze the Real – time Programming for real-time systems.									
CO 5	Analyze th	e Real - tim	e process, A	pplications a	and understa	nd the Distri	buted Real -	time systems		

	CO-PO Mapping													
СО		PO PSO												
	РО	O PO												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2									1	2
CO2	3	3	2	2									1	1
CO3	3	3	2	2										1
CO4	3	3	2	2									1	2
CO5	CO5 3 3 2 <th2< th=""> 2 <th2< th=""> <th2< th=""></th2<></th2<></th2<>													
					1: Lo	w, 2-M	ledium	, 3- Hig	<u></u> gh					

COURSE CONTENT MODULE – 1

Introduction to Real - time systems: Typical examples of RTS, Characteristic features of RT Applications. Structural, Functional and Performance requirement of Reactive RTS. Distinctive Features from Non - RT and Off - line system. Modelling RTS: Representation of time, Concurrency and Distributedness in discrete event systems.

At the end of the Module 1, students will be able to:

- 1. Understand the Real time systems
- 2. Analyze the Characteristic features of RT applications
- 3. Develop features from Non RT and Off line system

MODULE -2

Hierarchical representation of complex DES. Input, Output and Communication. Examples of Modelling practical systems as RT DES. Modelling programs as RTS. Analyzing RTS: Analyzing Logical properties of DES such as Reachability, Deadlock etc. Analyzing timing related properties, Specification and Verification of RT DES properties.

At the end of the Module 2, students will be able to:

- 1. Understand the Hierarchical representation
- 2. Analyzing Logical properties

MODULE-3

Temporal logic, Model checking of industrial systems. Requirements and features of real - time Computing Environments: Real - time Operating Systems, Interrupts, clock, Device support.

At the end of the Module 3, students will be able to:

- 1. Derive the Example of checking safety and timing properties.
- 2. Understand the Requirements and features of real time Computing Environments

MODULE-4

Real time System, Multi tasking, Static and Dynamical Scheduling of resource Allocation, Real – time Programming.

At the end of the Module 4, students will be able to:

- 1. Understand the Real time System
- 2. Analyze the Real time Programming.

MODULE-5

Real - time process and applications, Distributed Real - time systems.

At the end of the Module 5, students will be able to:

- 1. Analyze the Real time process
- 2. Understand the Real time Applications
- 3. Understand the Distributed Real time systems

Total hours: 48 hours

Term work:

Assignments followed by quizzes

Content beyond syllabus:

Dynamic Scheduling Algorithms

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	СО	Reference
1	Distributedness in discrete event systems	CO1	https://www.intechopen.com/chapters/38818
2	Specification and Verification of RT DES properties	CO2	https://hal.archives-ouvertes.fr/hal-01589479/document
3	Requirements and features of real - time Computing Environments	CO3	https://www.sciencedirect.com/topics/computer-science/real- time-computing
4	Multi tasking of Real time System	CO4	https://www.razorrobotics.com/multitasking-real-time- operating-systems/
5	Distributed Real - time systems	CO5	https://link.springer.com/book/10.1007/978-3-030-22570-4

Text Book(s):

1. Jane W S Liu, "Real- Time Systems", Pearson publications, 1st edition, 2006.

Reference Book(s):

1. Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India, 2009.

- Online Resources: 1. https://www.intechopen.com/chapters/38818 2. https://hal.archives-ouvertes.fr/hal-01589479/document 3. https://www.sciencedirect.com/topics/computer-science/real-time-computing 4. https://www.razorrobotics.com/multitasking-real-time-operating-systems/ 5. https://link.springer.com/book/10.1007/978-3-030-22570-4

Web Resources:

1. https://onlinecourses.nptel.ac.in/noc21_cs98/preview

	NARAYANA ENGINEERING COLLEGE:NELLORE									
20EE4003		MACH	INE MOI	DELING A	AND ANA	LYSIS		R2020		
	Η	ours / Wee	ek	Total	Credit		Max Mar	:ks		
	L T P		hrs	С	CIE	TOTAL				
	3	0	0	48	3	40	100			
Pre-requis	ite: Funda	mental co	ncepts of l	Electrical	Machines a	and Electro	o Magnetic	Fields.		
Course C	Course Objectives:									
Able to unc	lerstand the	•								
1. Ab	le to analyz	the Bas	ic Concept	ts of Mode	ling Electr	ical machi	ines.			
2. To	understand	Mathema	itical mode	el of the D	C Motor.					
3. Ab	le to analyz	ze the dyn	amic mode	eling and p	hase trans	formation.				
4. To	understand	the Mode	eling of Ind	duction M	achine.					
5. To	understand	the Dyna	mic Analy	sis of Syn	chronous 1	Machine.				
Course O	utcomes:	After succ	cessful cor	npletion o	f the cour	se, the stu	dent will	be able to:		
CO 1	Understa	nd the bas	ic concept	s of AC/ D	C machine	e modeling	g. (BL-2)			
CO 2	Understa	nd the Ma	thematical	model of	the DC Ma	chine. (Bl	L-2)			
CO 3	Analyze	the Refere	ence frame	theory mo	del of Ele	ctrical ma	chine.(BL-	-3)		
CO 4	Analyze the steady state and dynamic state operation of three-phase induction machine.(BL-3)									
CO 5	Analyze 3)	the model	ling and si	mulation of	of three ph	ase synch	ronous ma	chine .(BL-		

	CO-PO Mapping													
		PO PSO												
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	2	2		2							1	3
CO2	2	2	2										2	3
CO3	2	2	2			2							2	3
CO4	3	2											2	3
CO5	2	3				2							1	3
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT								
MODULE – 1	BASIC CONCEPTS OF MODELING	08 Hours							
Basic Two - pole Machi	ne representation of Commutator mach	ines, 3-phase synchronous machine							
with and without damper bars and 3-phase induction machine, Kron's primitive Machine - voltage, current and Torque equations.									
At the end of the Module 1, students will be able to:									
 Understand the Two - pole Machine representation of Commutator machines. (BL-2) Study the Kron's primitive Machine. (BL-2) 									
3. Understand th	e voltage, current and Torque equations	. (BL-2)							
MODULE -2	MODELING OF DC MACHINES	08 Hours							
Mathematical model of separately excited D.C motor –Steady State analysis - Transient State analysis - Sudden application of Inertia Load - Transfer function of Separately excited D.C Motor - Mathematical model of D.C Series motor, Shunt motor - Linearization Techniques for small perturbations.									

At the end of the Module	2, students will be able to:									
1. Compare the Mat	hematical model of Different of DC Motor	rs. (BL-2)								
2. Explain the Stead	2. Explain the Steady State analysis. (BL-2)									
3. Understand the Li	nearization Techniques for small perturbat	tions. (BL-2)								
MODULE-3	REFERENCE FRAME THEORY	08 Hours								
Reference frame theory	Real time model of a two phase induction	on machine - three phase to two								
phase transformation - Dynamic modeling of three phase Induction Machine - Stator reference frame										
model - Rotor reference frame model Synchronously rotating reference frame model.										
At the end of the Module	At the end of the Module 3, students will be able to:									
1. Understand the Re	eal time model of a two phase induction m	achine. (BL-2)								
2. Explain the three	phase to two phase transformation. (BL-2)								
3. Understand the S	tator and Rotor reference frame model. (B	L-2)								
MODULE-4 MODELING OF INDUCTION 08 Hours										
Three phase induction m	Three phase induction machine, equivalent circuit and analysis of steady state operation – free									
acceleration characteristi	cs – voltage and torque equations in ma	chine variables and arbitrary								
Reference frame variable	es - analysis of dynamic performance for	load torque variations.								
At the end of the Module	4, students will be able to:									
1. Demonstrate on st	eady state operation of induction machine	e. (BL-2)								
2. Understand the vo	ltage and torque equations in induction n	nachines. (BL-2)								
3. Analysis of dynam	nic performance of induction machines. (BL-3)								
	MODELING AND ANALYSIS OF	00 H								
MODULE-5	SYNCHRONOUS MACHINES	08 Hours								
Synchronous machine i	nductances - voltage equations in the	rotor's dq0 reference frame -								
electromagnetic torque -	current in terms of flux linkages - simul	ation of three phase synchronous								
machine.										
Dynamic performance of	of synchronous machine, three -phase t	fault, comparison of actual and								
approximate transient torc	que characteristics, Equal area criteria.									
At the end of the Module 5, students will be able to:										
1. Understand the electromagnetic torque.(BL-2)										
2. Explain the Synchronous machine inductances. (BL-2)										
3. Demonstrate on simulation of three phase synchronous machine.(BL-2)										
		Total hours: 40 hours								
1										

Term work:

- 1. Compare and Contrast the Mathematical model of different types of DC Motors submit the report.
- 2. Compare and Contrast the 3 phase synchronous machine with and without damper bars and submit the report.
- 3. Analyze the two phase induction machine and three phase induction machine and submit the report.
- 4. Analyze the Synchronous motor and PM Synchronous motor and submit the report.

Content beyond syllabus:

- 1. Symmetrical Two phase Induction Machine.
- 2. Unsymmetrical Two phase Induction Machine.
- 3. Modeling of PM Synchronous motor.

Self-Study:

Co	ontents	to promote self-Learning:	
	SNO	Module	Reference
	1	BASIC CONCEPTS OF MODELING	https://nptel.ac.in/courses/112/107/112107220/
	2	MODELING OF DC MACHINES	https://nptel.ac.in/courses/108/106/108106023/
	3	REFERENCE FRAME THEORY	http://nptel.vtu.ac.in/econtent/courses/EEE/06EE 63/index.php
	4	MODELING OF INDUCTION	https://nptel.ac.in/courses/108/106/108106023/
	4	MACHINES	
		MODELING AND ANALYSIS	https://nptel.ac.in/courses/108/101/108101004/
	5	OF SYNCHRONOUS	
		MACHINES	
	6	DYNAMIC ANALYSIS OF	https://nptel.ac.in/courses/108/106/108106023/
	0	SYNCHRONOUS MACHINES	

Text Book(s):

- 1. R. Krishnan, "Electric Motor Drives Modeling, Analysis & Control", PHI Learning Private Ltd, 2009.
- 2. Paul C.Krause, Oleg Wasyzczuk, Scott S, Sudhoff, "Analysis of Electric Machinery and Drive Systems", John Wiley, Second Edition, 2010.
- 2. Sawhney, A.K., "A Course in Electrical Machine Design", Dhanpat Rai & Sons, New Delhi, 2013.

Reference Book(s):

- P S Bimbhra, "Generalized Theory of Electrical Machines", Khanna Publishers, 5th Edition, 2014.
- 2. A.E, Fitzgerald, Charles Kingsley, Jr, and Stephan D, Umanx, "Electric Machinery", Tata McGraw Hill, 5th Edition, 1992.
- 3. Chee Mun Ong –"Dynamic simulation of Electric machinery using MATLAB / Simulink", Prentice Hall of India Publications.
- 4. Ramamoorthy M, "Computer Aided Design of Electrical Equipment", East-West Press.

Online Resources/ Web References:

- $1. \ \underline{https://books.google.co.in/books?id=0_D6gfUHjcEC&printsec=frontcover#v=onepage&q&f=false}$
- 2. <u>http://nptel.ac.in/courses/108106023/</u>
- 3. <u>https://easyengineering.net/electrical-machinery-by-bimbhra/</u>
- 4. https://www.hindawi.com/journals/mpe/2017/7348263/
- 5. https://nptel.ac.in/courses/108/106/108106023/
- 6. <u>https://nptel.ac.in/courses/108/102/108102146/</u>
- 7. http://www.ijrimsec.com/assoc_art/volume7_1/Ch_10.pdf
- 8. https://nptel.ac.in/courses/108/106/108106023/#

NARAYANA ENGINEERING COLLEGE:NELLORE									
20EE4008		Electrical Machine Design R2020							
	Н	ours / Wee	k	Total	Credit	Max Marks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
	3	0	0	48	3	40	60	100	
Pre-req and Syn	Pre-requisite: Basic Electrical Engineering, DC Machines, Induction machines, Transformers and Synchronous machines								
Course	Course Objectives:								
1.	1. To discuss the properties of electrical, magnetic and insulating materials used in the design of								
	electrical mach	ectrical machines.							
2.	To design arma	design armature and field systems for D.C. machines.							
3.	To design core	design core, yoke, windings and cooling systems of transformers.							
4.	To design state	design stator and rotor of induction machines.							
5.	To design stator and rotor of synchronous machines and study their thermal behavior.								
Course Outcomes : After successful completion of the course, the student will be able to:							e to:		
CO 1	Understand the basic principles of machine design. (BL-2)								
CO 2	Analyze tł	Analyze the performance design DC motor. (BL-4)							
CO 3	Analyze tł	Analyze the performance design winding and core of transformer. (BL-4)							
CO 4	Analyze tł	Analyze the performance design winding and core of rotating electrical machine. (BL-4)							
CO 5	Analyze tł (BL-4)	Analyze the short circuit ratio and its effects on performance of synchronous machines. (BL-4)							

CO-PO Mapping														
СО		PO PSO												
	PO						РО	PSO	PSO					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2													
CO2	2	3	3	3	3								3	
CO3	2	3	3	3	3								3	
CO4	2	3	3	3	3								3	
CO5	2	3	3	3	3								3	
	1: Low, 2-Medium, 3- High													

COURSE CONTENT							
MODULE – 1	PRINCIPLES OF ELECTRICAL MACHINE DESIGN	8Hrs					
Introduction, conside materials and insulat	ntroduction, considerations for the design of electrical machines, limitations. Different types of materials and insulators used in electrical machines.						
At the end of the Mo 1. Understa	At the end of the Module 1, students will be able to:						
 Understand the different types of material used in electrical machines. (BL-2) Understand the different types of Insulators used in electrical Machines. (BL-2) 							
MODULE -2 DESIGN OF DC MACHINES 10Hrs							
Output equation, choice of specific loadings and choice of number of poles, design of Main dimensions of the DC machines, Design of armature slot dimensions, commutator and brushes, magnetic circuit - estimation of ampere turns, design of yoke and poles- main and inter poles, field windings – shunt, series and inter poles.							

At the end of the Module 2, students will be able to:

- 1. Explain the output equation of DC machine. (BL-2)
- 2. Explain the choice of specific loadings for DC machine. (BL-2)
- 3. Understand the design of main dimension of DC machine and Design of armature slot, commutator yoke and pole. (BL-2)

MODULE-3	DESIGN OF TRANSFORMERS	10Hrs

Output Equations for single phase and three phase transformers, expression for volts/turn, Main Dimensions, Window space factor, Design of core and winding, Overall dimensions, expression for leakage reactance and voltage regulation, No load current, Temperature rise in Transformers, Design of Tank, Methods of cooling of Transformers.

At the end of the Module 3, students will be able to:

- 1. Understand the main dimensions of transformers. (BL-2)
- 2. Understand the calculation of no load current.(BL-2)
- 3. Understand the design of transformer tank. (BL-2)

MODULE-4	Design of Induction Motors
MODULE-4	Design of Induction Motors

Output Equation, Choice of Specific Loadings, Main Dimensions of Stator. Design of stator slots and Winding, Choice of Length Air Gap, Estimation of Number of Slots for Squirrel Cage Rotor. Design of Rotor Bars and End Ring. Design of Slip Ring rotor. Estimation of No Load Current and Leakage Reactance of single phase and Three Phase Induction motor.

At the end of the Module 4, students will be able to:

- 1. Understand the specific loadings and main dimensions of single phase and three phase induction motor. (BL-2)
- 2. Understand the design of slip ring and squirrel cage rotor. (BL-2)
- 3. Understand the Design of end rings and slip rings. (BL-2)

MODULE-5 Design of Three Phase Synchronous Machines 10Hrs

Output Equation, Choice of Specific Loadings, Short Circuit Ratio, Main Dimensions of Stator. Design of stator slots and Winding. Design of Salient and non- salient Pole Rotors. Magnetic Circuit and Field Winding.

At the end of the Module 6, students will be able to:

- 1. Understand the output equation of synchronous machines. (BL-2)
- Understand the knowledge applied by designing a machine for an industrial application. (BL-2)
- 3. Explain the Magnetic Circuit and Field Winding of a synchronous machine. (BL-2)

Total hours: 48 hours

10Hrs

Term work:

- 1. Field trip visit at Voltactive Power Technologies Pvt Ltd Vijayawada to understand the design of transformer .
- 2. Develop armature winding diagram for DC and AC machines Develop a layout for substation using the standard symbols for substation equipment through Auto CADD
- 3. Draw sectional views of core and shell types transformers using the design data through Auto CADD
- 4. Draw sectional views of assembled DC machine or its parts using the design data or the sketches through Auto CADD.

Content beyond syllabus:

- 1. Design of small transformer
- 2. Modelling Of Electro Static and Magnetic Device.

3. Estimation of material and electrical installation of motor in different industry

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	Reference
1	Principles Of Electrical Machine	http://nptel.vtu.ac.in/econtent/courses/EEE/06EE63/in
	Design	dex.php
2	Design of DC Machines	https://nptel.ac.in/courses/108/106/108106023/
3	Design of Transformers	http://nptel.vtu.ac.in/econtent/courses/EEE/06EE63/in
		<u>dex.php</u>
4	Design of Induction Motors	https://nptel.ac.in/courses/108/106/108106023/
		https://nptel.ac.in/courses/108/106/108106023/
5	Design of Three Phase	https://nptel.ac.in/courses/108/106/108106023/
	Synchronous Machines	

Text Book(s):

- 1. Sawhney, A.K., 'A Course in Electrical Machine Design', Dhanpat Rai & Sons, New Delhi, 2011.
- 2. M.V.Deshpande "Design and Testing of Electrical Machine Design" Wheeler Publications, 2010.
- 3. V.N. Mittle and A. Mittle, "Design of Electrical Machines", 5th Edition, Standard Publications and Distributors, 2014, New Delhi.

Reference Book(s):

- 1. A.Shanmuga Sundaram, G.Gangadharan, R.Palani 'Electrical Machine Design Data Book', New Age International Pvt. Ltd., Reprint, 2007.
- 2. R.K.Agarwal "Principles of Electrical Machine Design" Esskay Publications, 5th Edition Delhi, 2014.
- 3. Sen, S.K., 'Principles of Electrical Machine Designs with Computer Programmes', Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 1987
- 4. Ramamoorthy M, "Computer Aided Design of Electrical Equipment", East-West Press.
- 5. M. N. O. Sadiku, "Numerical techniques in Electromagnetics", CRC Press Edition-2001.
- 6. M.V. Deshpande, "Design and Testing of Electrical Machines" PHI learning, New Delhi.

Online Resources:

https://nptel.ac.in/courses/108/106/108106023/

Web Resources:

http://nptel.vtu.ac.in/econtent/courses/EEE/06EE63/index.php

JuhaPyrhonen, TapaniJokinen, Valeria Hrabovcova "Design of Rotating Electrical Machines", ISBN: 978-0-470-69516-6. Willey Publication Hardcover. 538 pages. February 2009. .
	NARAYANA ENGINEERING COLLEGE:NELLORE										
20EE4013		Program	nmable Cor	ntrol Device	es and App	ications		R2020			
	Н	ours / We	ek	Total	Credit		Max Mar	ks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requisi	Pre-requisite: To Learn about Power Electronic devices, Semiconductor drives, Energy										
storage sy	storage systems(Battery, Fuel Cell, Super Capacitor etc).										
Course Objectives:											
1.	Understa	nd the bas	ic function	s and type	s of PLCs.						
2.	Get expos	sure of Eas	y Veep soft	ware, its ap	plications.						
3.	. Classification of PLCs and applications										
4.	Programm	ning using l	PLCs .								
5.	Troublesh	ooting asp	ects using P	PLCs.							
Course Out	tcomes: Af	ter succes	sful comple	etion of th	e course, tl	ne student	will be abl	e to:			
CO 1	Understa	nd differe	nt types of	PLCs (BI	L-2)						
CO 2	Understar	nd the usag	ge of Easy V	eep softwa	re (BL-1)						
CO 3	Understand the hardware details of Allen Bradley PLC . (BL-2)										
CO 4	Programming of PLCs . (BL-2)										
CO 5	Know abo	Know about few applications of PLCs in different fields of Science and Technology.									
	(BL-2)										

	CO-PO Mapping													
СО		PO PSO												
	PO	PO P								PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2						2						2	3
CO2	2												2	2
CO3	3		1										1	2
CO4	2												1	
CO5	2												2	1
	1: Low, 2-Medium, 3- High													

	COURSE CONTENT									
MODULE – 1	INTRODUCTION	8 Hours								
Basic functions of PL	Cs, Mechanical relays versus PLC, Different types of PLC's – A	AllenBradley –								
Micrologix: ML1000,	Micrologix: ML1000, ML1100, SLC500, Compact Logix, Mitsubishi FX series, HMI's, Processor and I/O									
cards.										
At the end of the Mo	dule 1, students will be able to:									
1. To unders	1. To understand about basic functions of PLCs. (BL-2)									
2. To disting	uish between PLCs and Mechanical relays. $(\mathrm{BL} ext{-}2)$									
3.To know a	bout Processor and I/O cards. (BL-2)									
MODULE -2	Logic diagrams	8 Hours								
Introduction to Ea	sy Veep software, Link between mechanical, electrica	l and programming								
documentation,	Logic diagrams, Flip-Flop Logic, M8000, M80	01 internal bits								
interpretation, Bin	ary code, data table, manipulation.									

- 1. To know about Easy Veep software .(BL-1)
- 2. To know about Logic diagrams. (BL-2)

MODULE-3	PLC software and applications	8 Hours
PLC software and	applications, Boolean algebra – understanding binary	code, ADD and SUB
functions, UP and	Down Counters, Introduction to k1Y0, MOV function, C	PR and ZCP
functions, SHWT a	and SHRD instructions, Introduction to Absolutely Drur	n Instruction.
At the end of the Mo	odule 3, students will be able to:	

- 1. To know about basic features of PLCs. (BL-2)
- 2. To know about various instructions of PLC. (BL-2)

						· ,			
М	ODULE-4	PLC	LC Hardware					10	Hours
Allen	Bradley P	'LC:	Introduction	to	Rockwell	Software,	Hardware	focus,	Hardware
consid	lerations (F	ield	wiring, Master	r Co	ontrol Relay	y, VFD), Bas	sic program	ming ar	ıd
applic	ations, Case	cade	control – subr	out	ine, Differe	ent program	1S.		
At the \circ	end of the Mo	odule	4, students will	be a	able to:				
1.	To know at	oout	various PLC vei	rsio	ns. (BL-2)				
2.	To underst	and a	about Cascade	con	trol and sul	proutines. (I	BL-1)		

MODULE-5	PLC IC applications	10 Hours
Programming in and counters, (structions: Instructions and binary interpretation, Bit Comparison instructions, Programming Instructions -	Instruction, Timers Math instructions,
Move and Logica	al Instructions, Discussions of programming, communica	ations for PLC-
Robotic arm, Exe	ercise of setup and monitoring.	
At the end of the N	Aodule 6, students will be able to:	
1. To know a	about various Programming instructions. (BL-1)	
2. To unders	stand Math instructions in PLCs. (BL-2)	

3. To understand about Communications with PLC using set up and monitoring. (BL-2)

Total hours: 44 hours

Term work:

Term work contains minimum two group assignments followed by seminars and quiz's

Content beyond syllabus:

- **1.** Hybridization of different energy storage devices
- 2. Mechanics of Electric Vehicles

Self-Study:

		-	
SNO	Торіс	со	Reference
1	Introduction to PLC	CO1	https://www.youtube.com/watch?v=PbAGI_mv5XI
2	PLC logic circuits	CO2	https://www.youtube.com/watch?v=X3xGqdb0DAA
3	PLC software applications	CO3	https://www.youtube.com/results?search_query=PLC+s oftware+

4	PLC Hardware	CO4	https://www.youtube.com/results?search_query=plc+har	T
	applications		dware+components	
5	PLC IC applications	CO5	https://www.youtube.com/watch?v=JvTCgq5vss0	Ī

1. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.

2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

3. Electric Vehicle Technology Explained-James Larminie, John Lowry-John Wiley & Sons Ltd,-2003

4. Electric & Hybrid Vehicles-Design Fundamentals-Iqbal Hussain, Second Edition, CRCPress, 2011

Reference Book(s):

1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.

2. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

3. Iqbal Husain, "Electric and Hybrid Electric Vehicles", CRC Press, 2011.

4. Wei Liu, "Hybrid Electric Vehicle System Modeling and Control", Second Edition, WILEY, 2017

Online Resources / Web References:

1. https://b-ok.asia/book/1226776/eceb4b

2. https://b-ok.asia/book/3357286/21e776

3.<u>http://ceb.ac.in/knowledge-center/E-</u>

BOOKS/Modern%20Electric,%20Hybrid%20Electric%20&%20Fuel%20Cell%20Vehicles%20-

%20Mehrdad%20Ehsani.pdf

4. https://b-ok.asia/book/3516646/6fe038

5. <u>https://nptel.ac.in/courses/108/103/108103009/</u>

6. https://www.youtube.com/watch?v=V004WUdpHeA&list=PLIYm0-AHZdZRLYSylFinxkspWmcgNvbtl

7. https://www.youtube.com/watch?v=11e_d3Q9jEc

NARAYANA ENGINEERING COLLEGE:NELLORE										
20EE4018			HYBRID E	LECTRICAL	VEHICLES			R2020		
	Н	ours / Wee	k	Total	Credit		Max Marks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requisi	Pre-requisite : To Learn about Power Electronic devices, Semiconductor drives, Energy									
Course Obj	Course Objectives:									
1.	1. To understand Importance of Hybrid Electric Vehicles									
2.	To Know the various drive-train topologies									
3.	To Learn the operation and configurations of DC & AC Drives									
4.	To Know the importance of various Energy storage systems and Energy									
	managem	ent strate	gies							
5.	To provide	e knowledg	e about su	ipervisory	v control o	of EVs				
Course Out	comes: Aft	ter success	ful comple	etion of the	e course, th	ne student	will be abl	e to:		
CO 1	Understa	nd the mo	dels to de	scribe hyb	rid vehicle	s and their	performa	nce (BL-2)		
CO 2	Classify V	arious hy	brid drive	-train top	ologies(B	L-1)				
CO 3	Understand the various configurations of DC & AC Motor drives. (BL-2)									
CO 4	Understa	nd the diff	erent pos	sible ways	of energy	storage a	nd differe	nt strategies		
	related to	Energy m	anagemen [.]	t strategies	. (BL-2)					
CO 5	Understa	nd the mo	de of operation	ation and c	control Arc	hitecture.	(BL-2)			

	CO-PO Mapping													
СО		PO PSO												
	PO	PO P								PSO	PSO			
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2						2						2	3
CO2	2												2	2
CO3	3		1										1	2
CO4	2												1	
CO5	2												1	
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					

COURSE CONTENT									
MODULE - 1 INTRODUCTION TO ELECTRIC VEHICLES 8 Hours									
Conventional Vehic transmission charac importance of hybri	cles: Basics of vehicle performance, vehicle power sour cteristics, History of hybrid and electric vehicles, social id and electric vehicles, impact of modern drive-trains on	rce characterization, and environmental energy supplies.							
At the end of the Mo	At the end of the Module 1, students will be able to:								
1. Understar	nd the importance of Electric vehicles over Conventional v	vehicles. (BL-2)							
2. Understa (BL-2)	nd the social and environmental importance of hybrid a	nd electric vehicles.							

3..Understand the impact of modern drive-trains on energy supplies. $\left(BL\text{-}2\right)$

М	DDULE -2	Hybrid Electric Drive-trains	8	Hours
Basic	concept of I	hybrid traction, introduction to various hybrid drive-tra	in topo	logies,
powei	flow contr	ol in hybrid drive-train topologies, fuel efficiency analy	sis	
At the	end of the M	odule 2, students will be able to:		
1.	Compare v	various hybrid drive-train topologies. (BL-1)		
2.	Explain po	wer flow control in hybrid drive-train topologies. (BL-2)		
3.	Understar	nd the Fuel efficiency analysis. (BL-2)		
M	ODULE-3	Electric Propulsion unit	8	Hours
Config Motor	guration and drives, Sw	d control of DC Motor drives, Induction Motor drives, Pe itch Reluctance Motor drives	rmanen	t Magnet
At the	end of the M	odule 3, students will be able to:		
1.	Understan	d Configuration of DC Motor drives. (BL-2)		
2.	Understan	d Configuration of Induction Motor drives. (BL-2)		
3.	Understan	d Configuration of SRM drives. (BL-2)		
M	ODULE-4	Energy Storage Systems and Energy Management	10	Hours
Introd Cell, S Introd classif	luction to E uper Capac luction to e <u>ication of d</u>	nergy Storage Requirements in Hybrid and Electric Veł itor based energy storage and its analysis. nergy management strategies used in hybrid and electr ifferent energy management strategies.	icles, Ba	attery, Fuel es,
At the	end of the M	odule 4, students will be able to:		
1.	Understan	d the requirements of Energy storage systems. (BL-2)		
2.	Know the l	Battery based Energy storage systems. (BL-1)		
3.	Understan	d the importance of energy management strategies. (BL	-2)	
M	DDULE-5	Hybrid Vehicle Control Strategy	10	Hours
HEV s brake	upervisory mode - reg	control - Selection of modes - power spilt mode - para eneration mode - series parallel mode.	allel mo	de - engine
At the \circ	end of the M	odule 6, students will be able to:		
1.	Know the s	speed control techniques of HEV. (BL-1)		
2.	Distinguish	the different modes of operation of control strategies. (B	L-2)	
		Tota	l hours:	44 hours

Term work:

Term work contains minimum two group assignments followed by seminars and quiz's

Content beyond syllabus:

- **1.** Hybridization of different energy storage devices
- 2. Mechanics of Electric Vehicles

Self-Study:

SNO	Торіс	СО	Reference
1	Introduction to	CO1	https://nptel.ac.in/content/storage2/courses/108103009/

	Electric Vehicles		download/M1.pdf
			https://www.youtube.com/watch?v=KOLBGKMo3zQ
2	Hybrid Electric	CO2	https://www.youtube.com/watch?v=oydKVcJqPQ0
	Drive-trains		https://nptel.ac.in/content/storage2/courses/108103009/
			download/M3.pdf
3	DC & AC Motor	CO3	https://www.youtube.com/watch?v=1AT1yuQ9awM&list=
	drives		PLFW6IRTa1g83sIfVY1p1xGqPGYUmXyahx
4	Energy Storage	CO4	https://www.youtube.com/watch?v=j7RaL_XKywk
	Systems & Energy		https://nptel.ac.in/content/storage2/courses/108103009/
	Management		download/M10.pdf
	Strategies		
5	Hybrid Vehicle	CO5	https://nptel.ac.in/content/storage2/courses/108103009/
	Control Strategy		download/M12.pdf

1. C. Mi, M. A. Masrur and D. W. Gao, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2011.

2. S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.

3. Electric Vehicle Technology Explained-James Larminie, John Lowry-John Wiley & Sons Ltd,-2003

4. Electric & Hybrid Vehicles-Design Fundamentals-Iqbal Hussain, Second Edition, CRCPress, 2011

Reference Book(s):

1. M. Ehsani, Y. Gao, S. E. Gay and A. Emadi, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 2004.

2. T. Denton, "Electric and Hybrid Vehicles", Routledge, 2016.

3. Iqbal Husain, "Electric and Hybrid Electric Vehicles", CRC Press, 2011.

4. Wei Liu, "Hybrid Electric Vehicle System Modeling and Control", Second Edition, WILEY, 2017

Online Resources / Web References:

1. https://b-ok.asia/book/1226776/eceb4b

2. https://b-ok.asia/book/3357286/21e776

3.<u>http://ceb.ac.in/knowledge-center/E-</u>

BOOKS/Modern%20Electric,%20Hybrid%20Electric%20&%20Fuel%20Cell%20Vehicles%20-

%20Mehrdad%20Ehsani.pdf

4. <u>https://b-ok.asia/book/3516646/6fe038</u>

5. https://nptel.ac.in/courses/108/103/108103009/

6. <u>https://www.youtube.com/watch?v=V004WUdpHeA&list=PLIYm0-AHZdZRLYSylFinxkspWmcgNvbtl</u>

7. <u>https://www.youtube.com/watch?v=11e_d3Q9jEc</u>

	NARAYANA ENGINEERING COLLEGE:NELLORE											
20EE4023		AUT	OMOTIVE I	ELECTRICAL	ENGINEER	ING		R2020				
	Hours / Week Total Credit Max Marks											
	L	Т	Р	hrs	С	CIE	AEE	TOTAL				
	3	0	0	48	3	40	60	100				
Pre-requis	ite: Nil											
Course Ob	jectives:											
1.	To under	stand the	various t	ypes of Ba	itteries an	d their ra	tings					
2.	To under	To understand the starting condition and its behavior										
3.	To under	stand the	various c	harging sy	stems in <i>l</i>	Automobi	les					
4.	To learn o	different L	ighting sys	stems in A	utomobile	S						
5.	To learn e	electronic	engine ma	anagemen	t system i	n Automo	biles					
6.	To under	stand the	various e	lectrical a	nd non el	ectrical se	nsors					
Course Out	tcomes: Af	ter success	ful comple	etion of the	e course, th	ne student	will be abl	e to:				
CO 1	Compute	e the efficie	ncy of Batt	eries throu	gh various †	test's						
CO 2	Underst	and the w	orking of d	lifferent st	arter drive	units and	their main	itenance and				
	the conce	the concept of vehicle charging system with its auxiliaries										
CO 3	Underst	and the da	zzling of he	ead light ar	nd its preve	entive met	hods					
CO 4	Understa	and the ele	ctronic da	shboard ir	nstrument	s & onboa	rd diagnos	stic system				
CO 5	Understa	and the val	rious senso	ors used ir	Automob	oiles						

	CO-PO Mapping													
СО		РО										PSO		
	PO										РО	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3		1				2						2	2
CO2	2	1	1											
CO3	2		1										1	
CO4	2	1	2										2	2
CO5	2	1	1										1	2
					1: Lov	w, 2-M	ledium	, 3- Hi	gh					

COURSE CONTENT							
MODULE – 1	10 Hours						
BATTERIES ACCESSORIES AND CHARGING SYSTEM							
Principle and construction of lead acid battery, characteristics of battery, efficiency of batteries, various tests on batteries, maintenance and chargin Generation of direct current, shunt generator characteristics, armature regulation, cutout. Voltage and current regulators, compensated voltage regulation.	, rating capacity and g. eaction, third brush gulator, alternators.						
At the end of the Module 1, students will be able to:	<u> </u>						
1. Explain the Principle and construction of lead acid battery							
2. Identify the ratings of various Batteries							
2. Understand the importance of voltage and every structure is showing							

3. Understand the importance of voltage and current regulators in charging system

MODULE -2

STARTING SYSTEM

Condition at starting, behavior of starter during starting, series motor and its characteristics, principle and construction of starter motor, working of different starter drive units, care and maintenances of starter motor, starter switches.

At the end of the Module 2, students will be able to:

- 1. Understand the importance of starter
- 2. Understand the principle and construction of starter motor
- 3. Explain the various types of starter switches

MODULE-3	10 Hours

LIGHTING

Lighting system: insulated and earth return system, details of head light and side light, LED lighting system, head light dazzling and preventive methods – Horn, wiper system and trafficator.

At the end of the Module 4, students will be able to:

- 1. Understand the arrangement of insulated and earth return system
- 2. Understand the working of wiper system and trafficator.

	10	Hours

FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Current trends in automotive electronic engine management system, electromagnetic interference suppression, electromagnetic compatibility, electronic dashboard instruments, onboard diagnostic system, security and warning system.

At the end of the Module 5, students will be able to:

1. Understand the use of electronics in engine management system

MODULE-5

MODULE-4

- 2. Understand the concept of electromagnetic interference suppression
- 3. Understand the Automobile security and warning system

10 Hours

SENSORS AND ACTUATORS

Types of sensors: sensor for speed, throttle position, exhaust oxygen level, manifold pressure, crankshaft position, coolant temperature, exhaust temperature, air mass flow for engine application. Solenoids, stepper motors, relay.

At the end of the Module 6, students will be able to:

- 1. Identify various types of sensors in Automobiles
- 2. Explain about air mass flow in engine application

Total hours: 50 hours

Term work:

Individual Assignments, followed by Quiz's

Content beyond syllabus:

1. Advanced charging system in Automobiles

elf-Study	:								
Contents	s to promote self-Lear	ning:							
SNO	SNO Topic CO Reference								
1	Construction of lead acid battery	CO1	https://circuitglobe.com/lead-acid-battery.html https://www.howacarworks.com/basics/how-the- charging-system-works						
2	Principle and construction of starter motor	CO2	https://www.samarins.com/glossary/starter.html						
3	Lighting system	CO3	https://what-when-how.com/automobile/lighting-circuit- automobile/						
4	Automotive electronic engine management system	CO4	https://www.ukessays.com/essays/engineering/electronic -control-unit-and-engine-management-system- engineering-essay.php						
5	Types of sensors	CO5	https://www.my- cardictionary.com/electronics/sensors.html						

1. Tom Weather Jr and Cland C.Hunter, *"Automotive Computers and Control system"*, Prentice Hall Inc., New Jersey.

2. A. Bonnick, "Automotive Computer Controlled Systems", 2011.

 Young A. P & Griffiths L, "Automobile Electrical and Electronic Equipments" English Languages Book Society & New Press, 1990.

Reference Book(s):

1. Santini Al, "Automotive Electricity and Electronics", Cengage Learning, 2012.

2. Tom Denton, "Automotive Electrical and Electronic System", SAE International, 2004.

3. William B. Ribbens, "Understanding Automotive Electronics", 6th Edition, Newnes, 2003.

4. BOSCH, *"Automotive Handbook"*, 8th Edition, BENTLEY ROBERT Incorporated, 2011.

5. Norm Chapman, "Principles of Electricity and electronics for the Automotive Technician", Delmar Cengage Learning, 2008.

6. Judge A.W, *"Modern Electrical Equipment of Automobiles"*, Chapman & Hall, London, 1992.

Online Resources:

1. https://b-ok.asia/book/526451/802478

2. https://b-ok.asia/book/2161298/3ad7b5

Web Resources:

1. <u>https://www.youtube.com/watch?v=hs7bABMtOMI&list=PLyqSpQzTE6M9G2SNxKfsVEjcM9MIJau4F</u> 2. <u>https://www.youtube.com/watch?v=HHgPBMMZ26w</u>

	NARAYANA ENGINEERING COLLEGE:NELLORE											
20EE4004	RE	NEWAB	LE ENER	GY CON	VERSIO	N SYSTE	MS	R2020				
	Н	ours / We	ek	Total	Credit		Max Marks					
	L	Т	Р	hrs	С	CIE	RECS	TOTAL				
	3 0 0 48 3 40 60 100											
Pre-requis	site: Nill											
Course O	bjectives:											
1.	To create	awarenes	s about va	rious Elec	tric Energy	y Conversi	on System	ns.				
2.	Learn the	fundamen	ntal concep	ots about s	olar energ	y conversi	on systems	s and				
	devices											
3.	To understand the solar thermal conversion systems for high temperature											
	applicatio	ons.										
4.	To learn	Thermal a	and Bio-en	ergy conv	ersion syst	ems						
5.	To Under	stand the	various teo	chnologies	that are u	sed in WE	ECS					
6.	To Under	stand the	Fuel cell t	echnology								
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	irse, the st	udent wil	l be able to:				
CO 1	Understa	nd various	s Electric H	Energy Co	nversion S	ystems (B'	TL-2)					
CO 2	Analyze	the solar t	hermal con	nversion s	ystem (Als	o for high	temperatu	re				
	application	ons) (BTL	4)									
CO 3	Analyze	the Photov	oltaic & E	Bio-Energy	/ Conversi	on System	s (BTL-4)					
CO 4	Illustrate	the existing	ng Wind E	nergy Cor	version Sy	/stem (BT	L-2)					
CO 5	Extend the (BTL-2)	he knowle	edge abou	t working	principle	of various	s Fuel cel	l technology				

CO-PO Mapping														
СО		PO PSO											50	
	PO	PO P											PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	1	1										1	
CO2	2	2											1	2
CO3	2	1											1	1
CO4	2	1	1											2
CO5	1	1	1										1	2
				-	l: Lov	v, 2-M	lediun	1, 3- H	ligh					

COURSE CONTENT

ELECTRIC ENERGY CONVERSION SYSTEM

12 Hrs

Generation of electricity using different sources, Transmission and distribution losses, AC to DC and DC to AC conversions, Electric motors: Types, losses, efficiency, Lightning systems, Diesel generating systems.

At the end of the Module 1, students will be able to:

MODULE – 1

1. Understand various Electric Energy Conversion Systems.

2. Understand losses, efficiency related to Electric Energy Conversion Systems.

MODULE -2SOLAR THERMAL CONVERSION SYSTEM12 Hrs

Relevance of solar thermal power generation; Components of solar thermal power plant, Design and performance, characteristics of different solar concentrator types suitable for thermal power generation **HIGH TEMPERATURE APPLICATIONS:** Types of solar thermal conversion system used in high temperature application, Tracking of solar concentrators; performance characterization of solar concentrators both line focus and point focus, Comparative analysis of the both mode focus system.

At the end of the Module 2, students will be able to:

- 1. Describe the existing solar Energy Conversion System
- 2. understand characteristics of different solar concentrators
- 3. Evaluate the solar thermal conversion systems for high temperature applications.
- 4. understand the working of various solar concentrators

MODULE-3	THERMAL ENERGY CONVERSION & BIO-ENERGY	8 Hrs
	CONVERSION SYSTEMS	

Thermo-electric generator, Concepts and design considerations of MHD generators, Cycle analysis of MHD systems, Thermionic power conversion and plasma diodes, Thermo chemical Conversion. Bio-energy conversion, bio methanation technology.

At the end of the Module 4, students will be able to:

- 1. Understand the Photovoltaic & Bio-Energy Conversion Systems
- 2. Analyze Thermo chemical and Bio-energy conversion

MODULE-4 WIND ENERGY CONVERSION SYSTEM (WECS) 8 Hrs	MODULE-4 WIND ENERGY CONVERSION SYSTEM (WECS) 8 H	rs
---	---	----

Rotor Selection, Annual Energy Output, HAWT, VAWT, Rotor Design Considerations-Number of Blades, Blade Profile -2/3 Blades and Teetering, Coning- Upwind/Downwind, Power Regulation, Yaw System- Tower, Synchronous and Asynchronous Generators and Loads, Integration of Wind Energy Converters to Electrical Networks, Inverters.

At the end of the Module 5, students will be able to:

- 1. Describe the existing Wind Energy Conversion System.
- 2. understand the Rotor Design Considerations

MODULE-5	
-----------------	--

FUEL CELL TECHNOLOGY

8 Hrs

Overview of fuel cells, Fuel cell thermodynamics, fuel cell efficiency, Fuel cell characterization, Fuel cell modelling and system integration, Balance of plant, Hydrogen production from renewable sources and storage, life cycle analysis of fuel cells

- At the end of the Module 6, students will be able to:
 - 1. Understand the Fuel cell technology
 - 2. Understand the Fuel cell modelling and system integration

Total hours: 48 hours

Term work:

Individual assignment, followed by Quiz and End semester examinations

Content beyond syllabus:

Advance energy conversion process

Self-Study:

SNO	Торіс	CO	Reference
1	Electric Energy	CO1	https://www.britannica.com/technology/energy-conversio
	Conversion		
	Systems		

	2	solar energy	CO2	https://www.appropedia.org/Solar_energy_conversion_sy	stem
		conversion		https://www.sciencedirect.com/topics/engineering/therma	<u>l-</u>
		systems		solar-energy-system-technology	
	3	Thermal and	CO3	http://www.fao.org/3/T1804E/t1804e06.htm	
		Bio-energy			
		conversion			
		systems			
	4	Wind Energy	CO4	https://www.appropedia.org/Wind_energy_conversion_sy	stem
		Conversion			
		Systems			
Ī	5	Fuel cell	CO5	https://www.hydrogenics.com/technology-	
		technology		resources/hydrogen-technology/fuel-cells/	

- 1. S. S. L. Chang, Energy Conversion, Prentice Hall, 1963
- 2. R. J. Rosa, Magneto hydrodynamic Energy Conversion, Springer, 1987.
- 3. V. S. Bagotsky, Fuel Cell Problems and Solutions, John Wiley & Sons, 2009

Reference Book(s):

- 1. Kettani, M.A., Direct energy conversion, Addison-Wesley, Reading, Mass, 1970
- 2. Hand book Batteries and Fuel Cells. Linden, McGraw Hill, 1984

Online Resources:

- 1. <u>https://archive.org/details/energyconversion00chan</u>
- 2. https://www.trine.edu/books/documents/de_text1.0.0.pdf

Web Resources:

- 1. <u>https://www.youtube.com/watch?v=mpHZWYpKDJg</u>
- 2. https://www.youtube.com/watch?v=GExTwRNkQBg

NARAYANA ENGINEERING COLLEGE:NELLORE											
20EE4009		SOLAR	AND FUE	L CELL E	NERGY S	YSTEMS		R2020			
	Н	lours / Wee	k	Total	Credit		Max Mar	ks			
	L	L T P hrs C CIE SEE TOT									
	3	0	0	48	3	40	60	100			
Pre-requis	ite: Nil										
Course O	bjectives:										
1. 7	Го make s	students u	nderstand	the funda	mental th	eory gove	rning the	photovoltaic			
devise and	make then	n carry ou	t prelimina	ary system	design.						
2. T	o learn the	fundame	ntal knowl	edge abou	t various f	uel cell tec	chnologies.				
Course O	utcomes:	After suce	cessful co	ompletion	of the cou	arse, the st	udent wil	l be able to:			
CO 1	Understa	nd the ne	ed of rad	iation of	sun and c	liscuss the	e various	performance			
	character	istics of so	olar radiati	on.(BL-2)							
CO 2	Discuss t	he photov	oltaic effe	ct, PV Cel	l efficienc	y and its li	mits along	with the			
	concepts	of fabricat	tion techno	ology for s	solar cell (BL-2)	-				
CO 3	Predict the	e perform	ance of so	lar photov	voltaic dev	ice and an	alyze its p	performance.			
	(BL-2)	-		-							
CO 4	Carry out	the application	ation of ph	otovoltai	system as	s power sy	stem. (BL-	-3)			
CO 5	Analyze	the perform	mance of t	fuel cells	under differ	ent operati	ing condition	ons and also			
	defend ap	propriate fu	el cell tech	nology for	a given app	olication. (H	3L-4)				

	CO-PO Mapping													
СО	PO												PSO	
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	1			2	2						2	1
CO2	3	3	3			2	2				2		3	2
CO3	2	2	1			2	2				2		2	2
CO4	2	2				2	2	2			2		3	3
CO5	2	3	2			2	2				2		2	1
]	l: Lov	v, 2-M	lediun	1, 3- H	ligh					

COURSE CONTENT									
MODULE – 1	Solar Radiation	08 Hours							
Sun as Energy Source, Solar Radiation at The Earth's Surface, Solar Radiation Geometry, Solar Time and Equation of Time, Sun Earth angles, Sun path diagram, Sunshine hours, Measurement of Solar Diffuse, Global and Direct Solar Radiation, Equipments, Estimation of Solar radiation on horizontal and tilted Surfaces, Global Solar radiation data, Indian Solar Radiation data analysis									
At the end of the Mod	ule 1, students will be able to:								
1.Understand t	he need of radiation of sun (BL-2)								
2. Discuss the	various performance characteristics of solar radiation.	(BL-2)							
MODULE -2	Solar Cells and its Fabrication	07 Hours							
MODULE -2Solar Cells and its Fabrication07 HoursSolar CellsConversion of Solar energy into Electricity - Photovoltaic Effect, Equivalent Circuit of the Solar Cell, Analysis of PV Cells: Dark and illumination characteristics, Figure of merits of solar cell, Efficiency limits, Variation of efficiency with band-gap and temperature, Efficiency measurements, High efficiency cells, Recent developments in Solar Cells, Role of nano-technology in Solar cells Fabrication Technology for Solar Cells High efficiency multi-junction solar cell, Quantum well solar cell, Technology for the fabrication of thin film wells									
At the end of the Mod	ule 2, students will be able to:								

1. Discuss t	he photovoltaic effect, PV Cell efficiency and its limits	s (BL-2)
2. Discuss t	Solar Photovoltoio System	2)
MODULE-3	Solar Photovoltaic System	10 Hours
Solar Photovoltaic Sy Solar cell array system design concepts, PV sy regulation, Maximum Solar Photo Voltaic S Sun Simulator, Testi Regulation, Power C configuration	analysis and performance prediction, Shadow analysis: Rel ystem design, Design process and optimization: Detailed arr tracking, Quick sizing method, Array protection. ystem Testing ng and performance assessment of Solar PV generator, onditioning, Converters and inverter, Concentrating sy	iability, Solar cell array ray design, Voltage , Electronic Control and ystem, System design and
At the end of the Mo	dule 3 students will be able to:	
1 Dredict the	performance of solar photovoltaic device and analyze	its performance (BL 2)
	SBV Device Systems	
MODULE-4	SPV Power Systems	12 Hours
Refrigeration, Teleco Hybridization Engin market analysis and At the end of the Mo 1. Carry out th	ommunication, Cathodic Protection, Solar PV Power I eering, Hybrid systems, Grid integration. Building In Economics of SPV systems. dule 4, students will be able to: he application of photovoltaic system as power system.	Plant-Status-Case Studies, itegrated PV Systems, PV . (BL-3)
MODULE-5	FUEL CELLS	12 Hours
History, Working prine equation, Electrochem Fuel Cells: AFC, PAF Fuel cell characteriza analyses; Fuel cell syst Application of Fuel generation, Automob laptops, mobiles, sub At the end of the Mo 1. Analyze the 2. Select and def	ciple of fuel cells, Fuel cell thermodynamics, fuel cell electrical kinetics, Butler-Volmer equation, performance evaluati C, SOFC, MCFC, DMFC, relative merits and demerits. Attom In-situ and ex-situ characterization techniques, I-V cur- tem integration Cells Fuel Cell usage for domestic power systems, lar bile, environmental analysis. Future trends in fuel cells, marines. dule 6, students will be able to: performance of fuel cells under different operating condition To	cochemistry - Nernst on of fuel cells, Types of rve, frequency response ge scale power portable fuel cells, ons. (BL-4) . (BL-4) tal hours: 48 hours
Term work:		

1. Field trip

Content beyond syllabus:

- 1. Introduction of hydrogen energy systems
- 2. Hydrogen production processes
- 3. Hydrogen storage and safety

Self-Study:

Contonto to anomato calf I comina

SNO	MODULE	Reference
1	Indian Solar Radiation data analysis	https://www.nrel.gov/docs/fy21osti/78025.pdf
2	Role of nano- technology in Solar cells	https://www.intechopen.com/chapters/73145
3	Converters and inverter in solar energy	https://www.energy.gov/eere/solar/solar-integration- inverters-and-grid-services-basics
4	Economics of SPV systems	https://extensionpublications.unl.edu/assets/pdf/g2182. pdf
5	Types of Fuel cells with relative merits and demerits	https://www.energy.gov/eere/fuelcells/types-fuel-cells

Text Book(s):

1. Fundamentals of Solar Cells: PV Solar Energy Conversion by AL Fahrenbruch and RH Bube, Academic Press, New York.

2. Solar Photovoltaics. Fundamental Technologies and Application by Chetan Singh Solanki, PHI Publicaton.

3. Principles of Fuel Cells by Xianguo Li, Taylor & Francis.

4. Fuel cell Systems Explained by James Larminie and Andrew Dicks, John Wiley & Sons, Inc.

5. Fuel Cells: From Fundamentals to Applications by S Srinivasan, Springer.

Reference Book(s):

- 1. Principles of Solar Engineering by F Kreith and JF Kreider, McGraw-Hill.
- 2. Fuel Cell Fundamentals by O'Hayre, SW Cha, W Colella and FB Prinz, Wiley.
- 3. Fuel Cell Science and Technology by Basu, S. (Ed) Springer, N.Y.

Online Resources:

- 1. https://www.nrel.gov/docs/fy21osti/78025.pdf
- 2. https://www.intechopen.com/chapters/73145
- 3. https://www.energy.gov/eere/solar/solar-integration-inverters-and-grid-services-basics
- 4. https://extensionpublications.unl.edu/assets/pdf/g2182.pdf

5. https://www.energy.gov/eere/fuelcells/types-fuel-cells

Web References:

- 1. https://www.youtube.com/watch?v=--GfdbavEk8
- 2. https://www.youtube.com/watch?v=qFnAIxyPXuQ
- 3. https://www.youtube.com/watch?v=px239v5o6xU
- 4. https://www.youtube.com/watch?v=pH03Y5KwpjU
- 5. https://www.youtube.com/watch?v=60eN9VDFLig

NARAYANA ENGINEERING COLLEGE:NELLORE									
20EE4014		WIN	D & BION	ASS ENF	RGY SYS	TEM		R2020	
	H	lours / Wee	k	Total	Credit		Max Mar	ks	
	L	Т	Р	hrs	С	CIE	SEE	TOTAL	
	3	0	0	48	3	40	60	100	
Pre-requis	ite: Nil								
Course O	bjectives:								
1.7	To acquire	the knowl	edge on w	ind power	generation	n			
2. T	o Understa	and the co	ncept of w	ind turbin	e design				
3. T	o Discuss	the Curren	nt trends in	n worldwic	le applicat	ions of wi	nd power		
4. T	o Understa	and the va	rious meth	ods Bio- (Chemical (Conversion	n systems		
5. T	o Discuss	the variou	s applicati	ons of bio	mass		•		
Course O	utcomes:	After suc	cessful co	ompletion	of the cou	urse, the st	tudent will	l be able to:	
CO 1	Understa	nd the pre	sent wind	energy sce	enario (BL	-2)			
CO 2	Explain t	he various	wind energ	y technolo	gies. (BL-3	3)			
CO 3	Identify v	various app	plications	of wind er	ergy .(BL-2	2)			
CO 4	Explain	the various	biomass co	onversion t	echnologie	s and testir	ng of perfor	mance of	
	biogas. (B	L-2)							
CO 5	Understan	d the Bio-l	Energy Syst	tems with I	Efficient Ap	plications.	(BL-2)		

CO-PO Mapping														
СО	PO PSO													50
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2									2	1
CO2	3	1	1	2									3	2
CO3	3	3	2	1									2	2
CO4	2	2	3	2									3	3
CO5	1	2	1		2								2	1
				-	1: Lov	v, 2-M	lediun	n, 3- H	ligh					

COURSE CONTENT												
MODULE – 1	MODULE - 1Wind Power Generation08 Hours											
Introduction – Basic p	Introduction – Basic principles of wind energy conversion power in the wind-Forces on blades and											
thrust on turbines – W	ind energy conversion - site selection Considerations	Basic components of										
WECS – Classification	n- Advantages and disadvantages – Power, torque and	l speed characteristics.										
At the end of the Mod	ule 1, students will be able to:											
1.Understand t	he need of wind energy (BL-2)											
2. Explain the	various performance characteristics of wind energy.(H	BL-1)										
3. Understand	the Basic principles of wind energy conversion syster	n (BL-2)										
MODULE -2	WECS design	07 Hours										
Design of wind turbine : Wind turbine design considerations; Methodology; Theoretical simulation												
of wind turbine characteristics; Test methods.												
Aerodynamic design p	principles; Aerodynamic theories; Axial momentum, b	plade element and										
combine theory; Roton	r characteristics; Maximum power coefficient; Prandl	t's tip loss Correction.										

MODULE-3

1. Discuss Wind turbine design considerations & characteristics (BL-2)

Wind Energy Applications & Measurements

10 Hours

2. Discuss the concepts of Aerodynamic theories (BL-2)

3.Understand the concept of Maximum power coefficient (BL-2)

Wind energy measurements: Wind speed, Wind direction, Data measurement and analysis, Performance evaluation of Wind energy system, Wind potential assessment Wind energy application Wind pumps: Performance analysis, design concept and testing; Principle of WEG; Stand alone, grid connected and hybrid applications of WECS; Economics of wind energy. Utilization; Wind energy in India; Case studies. At the end of the Module 3, students will be able to: 1. Explain the various measuring instruments used in wind systems (BL-2) 2.Understand the wind energy applications(BL-2) 3. Understand the Current trends in worldwide applications of wind energy (BL-2) **MODULE-4 Biomass conversion Technologies** 12 Hours **Bio Energy:** Introduction – Biomass conversion technologies – Bio gas generation – Factors affecting bio digestion or generation of gas – Classification of bio gas plants – advantages and disadvantages – Materials used for biogas plant – selection of site for biogas plant Thermo-chemical conversions: Direct Combustion, Technology of Biomass gasification, Pyrolysis and Liquefaction, Bio- Chemical Conversion: anaerobic digestion, alcohol production from biomass, **Chemical conversion process:** hydrolysis and hydrogenation **Biomass Gasifiers:** History, Principle, Design of Biomass Gasifiers, updraft gasifier, down draft gasifier, zero carbon biomass gasification plants, Gasification of plastic-rich waste, applications for cooking, electricity generation, Gasifier Engines, Operation of spark ignition and compression ignition engine with wood gas, methanol, ethanol and biogas, Biomass integrated gasification/combined cycles systems. At the end of the Module 4, students will be able to: 1. Discuss Biomass conversion technologies (BL-2) 2. Explain the concept of Bio- Chemical Conversion & Thermo-chemical conversions (BL-2) 3. Explain Direct & In-Direct Combustion methods (BL-2) 4. Discuss the historical perspective of biomass energy (BL-2) 5. Explain the Biomass Gasifiers (BL-2) 6. Discuss the concept of various Gasifier Engines (BL-2) **MODULE-5 Bio-Energy Systems with Efficient Applications 12 Hours** Traditional Stoves, Energy Efficient Cooking and Space heating Stoves, Metal Stoves Improved Gasifier Stoves, Pollution due to smoke emissions, Biogas Systems : Technology of Bio-gas production, Biogas Plants, Digester types, Digester design, Chemical kinetics and mathematical modeling of bio-methanation process, Dung, Vegetable Waste, Night Soil and Municipal Waste based Bio-gas plants, Bio gas as fuel for transportation, Lighting, Running Dual Fuel Engines, Electricity generation, Bio gas Bottling Plant Technology, Application of Bio gas slurry in agriculture, Design of Biogas for cold climates. At the end of the Module 6, students will be able to: 1. Explain the Bio-Energy Systems with Efficient Applications (BL-2) 2. Identify various real time applications. (BL-3) 3. Discuss the various applications of bio- energy (BL-2) **Total hours: 48 hours**

Term work:

1. Field trip

Content beyond syllabus:

1. Betz limit & Wind resource assessment

Self-Study:

Contents to promote self-Learning:

SNO	MODULE	Reference
1	Basic components of	https://www.youtube.com/watch?v=uUzqfckAlbg
	WECS	
2	Prandlt's tip loss	https://www.youtube.com/watch?v=F9J2BdprXOQ
	Correction	
3	Wind energy	https://www.youtube.com/watch?v=-N-QJkY1GEM
	measurements	
4	Biomass conversion	https://www.youtube.com/watch?v=H1hrkCdto
	technologies	https://www.youtube.com/watch?v=RrBOqjCtkk0
	Design of Biomass	
	Gasifiers	
5	Night Soil and	https://www.youtube.com/watch?v=ehNEtJtaFR8
	Municipal Waste	
	based Bio-gas plants	

Text Book(s):

1. S.N.Bhadra, D.Kastha, S.Banerjee, "wind electrical systems" Oxford University Press

2. S.Rao & B.B.Parulekar, "Energy Technology", 4th edition, Khanna publishers, 2005.

3. "Energy conversion systems" by Rakosh das Begamudre, New age international publishers, New Delhi - 2000.

Reference Book(s):

1. "Renewable Energy sources & Conversion Technology" by N.K.Bansal, Manfred Kleemann, Michael Meliss. Tata Mcgraw Hill Publishers.

2. "The Electrical Energy Storage" by IEC Market Strategy Board.

3. Jim Eyer, Garth Corey, "Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide, Report", Press, Feb 2010.

Online Resources:

1. https://www.lathamathavan.edu.in/lmgi/antiragging/WECS-%20EEE%20new.pdf

2. https://www.lathamathavan.edu.in/Imgi/antiragging/WECS-%20EEE%20new.pdf

3.https://engineering.purdue.edu/~dionysis/EE452/Lab9/Wind_Energy_Conversion.pdf

4. https://energystorage.org/why-energy-storage/technologies/

5. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118029008

Web References:

1. https://www.youtube.com/watch?v=mh51mAUexK4

2. https://www.youtube.com/watch?v=GExTwRNkQBg

3. https://www.youtube.com/watch?v=4a4XGu1mR5E

4. https://www.youtube.com/watch?v=xzY3CK43C98

5. https://www.youtube.com/watch?v=_OQtT4yhhWc

	NARAYANA ENGINEERING COLLEGE::GUDUR											
20EE4019		UTILI	ZATION O	F ELECT	RICAL EN	NERGY		R2020				
	H	lours / Wee	k	Total	Credit	Max Marks						
	L	Т	Р	hrs	С	CIE	UCE	TOTAL				
	3	0	0	48	3	40	60	100				
Pre-requisite: Nil												
Course O	bjectives:											
1.	To Summ	narize vari	ous electri	c drives a	nd traction	motors wi	th applicat	tions				
2.	To Under	To Understand the concepts of Mechanics of Train movement and associated										
	calculatio	calculations										
3.	To Expla	To Explain the laws of illumination and their application for various lighting										
	schemes							, C				
4.	To under	stand the o	lifferent m	ethods of	electric hea	ating and e	electric we	lding				
5.	To identi	fy how to	utilize the	solar radia	ation into e	lectrical en	nergy for c	lifferent				
	application	ons and to	understand	d the basic	principles	of wind e	nergy conv	version				
Course Or	itcomes: Af	ter success	sful compl	etion of th	e course, th	e student	will be able	e to:				
CO 1	Utilize th	e suitable	electric dr	ives for di	fferent app	lications()	BL=3)					
CO 2	Analyze	the Speed	I-Time Cur	ves of Dif	ferent Ser	vices(BL=	4)					
CO 3	Identify t	he energy	saving bas	sed on Illu	mination s	vstem (BL	_= <u>3</u>)					
CO 4	Understa	nd the u	tilization	of electr	rical energ	y for h	eating an	d welding				
	purposes	(BL=2)					0	0				
CO 5	Illustrate	the eff	ective us	age of	solar and	wind e	energy fo	r electrical				
	applicatio	ns(BI - 2)		uge 01	solui ullu		10157 10	i cheetheul				
	application	JIIS(DL-2)	/									

	CO-PO Mapping													
СО		PO PSO												
	PO	PO P												
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2												1	3
CO2	3	2												3
CO3	3	2		2									2	2
CO4	2			1	1								1	2
CO5	2	2	1				2						1	3
					1: Lov	w, 2-M	ledium	1, 3- Hi	gh					

COURSE CONTENT ELECTRIC DRIVES AND TRACTION

12 Hrs

Fundamentals of electric drive - choice of an electric motor - application of motors for particular services traction generator set, traction motors, power transformers - characteristic features of traction motor - systems of railway electrification - electric braking - train movement and energy consumption - traction motor control - track equipment and collection gear At the end of the Module 1, students will be able to:

1. Select the various Electric drives and Traction motors(BL=1)

2.Understand the types of railway electrification and track equipment(BL=2)

3.Explain the various electrical braking methods(BL=2)

MODULE – 1

MODULE -2	MECHANICS OF ELECTRIC TRACTION	12 Hrs
Mechanics of Train 1	Movement. Speed-Time Curves of Different Services	- Trapezoidal and
Quadrilateral Speed-T	Time Curves – Numerical Problems. Calculations of Trac	ctive Effort, Power,
Specific Energy Cons	umption, Adhesive Weight and Coefficient of Adhesion.	

- 1. Understand the Speed-Time Curves of Different Services(BL=2)
- 2. Explain the mechanics of train movement(BL=2)
- 3. Understand the factors effecting Specific Energy Consumption(BL=2)

MODULE-3 ILLUMINATION

08 Hrs

Introduction - definition and meaning of terms used in illumination engineering - classification of light sources - incandescent lamps, sodium vapour lamps, mercury vapor lamps, fluorescent lamps –design of illumination systems - indoor lighting schemes - factory lighting halls - outdoor lighting schemes - flood lighting - street lighting – UPS- energy saving lamps, LED – working principle of air conditioning system

At the end of the Module 3, students will be able to:

MODULE-4

- 1. Explain the various light sources (BL=2)
- 2. Understand the various lighting schemes(BL=2)
- 3. Illustrate the Energy conservation through LED usage(BL=2)

08 Hrs

Introduction - advantages of electric heating – modes of heat transfer - methods of electric heating -resistance heating - arc furnaces - induction heating - dielectric heating - electric welding – types -resistance welding - arc welding - power supply for arc welding - radiation welding

HEATING AND WELDING

At the end of the Module 4, students will be able to:

- 1. Understand the various electrical heating methods(BL=2)
- 2. List the advantages of electric heating(BL=1)
- 3. Explain the electrical welding methods(BL=2)

MODULE-5	SOLAR & WIND ENERGY CONVERSION	08 Hrs
	SYSTEM	

Solar Energy Conversion System: Introduction - solar constant – terrestrial solar radiation - solar radiation geometry – estimation of average solar radiation - physical principles of the conversion of solar radiation into heat – flat-plate collectors - transmissivity of cover system - energy balance equation and collector efficiency -concentrating collector - advantages and disadvantages of concentrating collectors

Wind Energy Conversion System: Introduction - basic principles of wind energy conversion site selection considerations - basic components of a WECS (Wind Energy Conversion System) -Classification of WECS - types of wind machines - analysis of aerodynamic forces acting on the blade

At the end of the Module 5, students will be able to:

- 1. Understand the principles of the conversion of solar radiation into electrical energy(BL=2)
- 2. Explain the various solar energy collectors(BL=2)
- 3. Understand merits and demerits of concentrating collectors(BL=2)
- 4. Understand the principles of wind energy conversion(BL=2)
- 5. Illustrate the components of Wind Energy Conversion System(BL=2)
- 6. Understand the aerodynamic forces acting on the blade(BL=2)

Total hours: 48 hours

Term work:

1.Report on different DC drives used in electric traction system in India

2. Report on different AC drives used in electric traction system in India

3.study different Electrification systems in traction and submit the report

4. Field trip to electric locomotive limited, Tirupati and submit report on protection system used in electric locomotive

5. Field trip to electric locomotive limited , Tirupati and submit report on energy consumption for different electric locomotives

6. Study the different lighting schemes & its line diagrams in Damodharam sanjeevaiah thermal power plant

7. Visit Nelcast industries, Gudur and submit the report on different types electric furnaces and its Rating

8. Visit Nelcast industries, Gudur and submit the report on protective schemes used for electric furnaces 9. Report on complete solar power utilization in India

10.Report on complete wind power utilization in India

Content beyond syllabus:

1. Energy Efficient Technologies in Electrical Systems

Self-Study:

Contents to promote self-Learning:

SN	Торіс	Reference
0		
1	Electric Drives	https://www.electronicshub.org/electric-traction-system/
	And Traction	
2	Mechanics Of	https://www.engineeringenotes.com/electrical-
	Electric Traction	engineering/electric-traction-electrical-engineering/train-
		movement-and-energy-consumption-electrical-engineering/37136
3	Illumination	https://nptel.ac.in/courses/108/105/108105060/
4	Heating And	https://www.electrical4u.com/electric-heating/
	Welding	twi-global.com/technical-knowledge/faqs/what-is-arc-
	_	welding
5	Solar & Wind	https://www.sciencedirect.com/topics/engineering/solar-collector
	Energy	https://www.awea.org/wind-101/basics-of-wind-energy
	Conversion	https://www.slideshare.net/BansiKansagara/et-wind
	System	

Text Book(s):

1. Utilization of Electric Energy, E. Openshaw Taylor and V. V. L. Rao, Universities Press, 2009.

2. N.V. Suryanarayana, "Utilisation of Electric Power", Wiley Eastern Limited, New Age International Limited, 1993

3. J.B.Gupta, "Utilisation Electric power and Electric Traction", S.K.Kataria and sons, 2000.

4. G.D.Rai," Non-Conventional Energy sources", Khanna publications Ltd., New Delhi 1997 5. D.P.Kothari, K.C.Singal, Rakesh Ranjan, "Renewable Energy Sources and Emerging

Technologies", PHI Learing Private Limited, 2013.

Reference Book(s):

1. Generation, distribution and utilization of electrical energy, C.L Wadhwa, Wiley Eastern Limited, 1993

2. R.K.Rajput, Utilisation of Electric Power, Laxmi publications private Limited.,2007

3. H.Partab, Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co., New Delhi-2004.

Online Resources:

1. https://b-ok.asia/book/5441788/abf631

2. https://b-ok.asia/book/2871150/836618

Web Resources:

1.https://www.youtube.com/watch?v=fQrZMMWo1mA&list=PLbMVogVj5nJThs8VThC-

DA8CZYsmaQypX&index=1

2. <u>https://www.youtube.com/watch?v=5ZGh08q9K7E&list=PLEprwsbQ0B8ITTiaONpKN3Q-bEBJKTMIQ</u>

3. <u>https://www.youtube.com/watch?v=p3PkcLjNUhI</u>

4.<u>https://www.youtube.com/watch?v=TpvmJBeGUrg&list=PLyqSpQzTE6MKwjFQByBvRx464XpCgO</u> EC&index=2

5. <u>https://www.youtube.com/watch?v=GzMuLpsRY-8</u>

6. https://www.youtube.com/watch?v=GExTwRNkQBg

	NARAYANA ENGINEERING COLLEGE::GUDUR										
20EE4024	E	NERGY A	UDIT & D	EMAND S	SIDE MAN	AGEMEN	T	R2020			
	H	lours / Wee	ek	Total	Credit		Max Marks				
	L	L T P		hrs	С	CIE	EMS	TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requisite: Nil											
Course (Objectives:										
1. To	learn about	energy co	nsumptior	and situa	tion in Ind	ia					
2. To	learn about	Energy N	lanagemen	nt.							
3. To	learn about	Energy N	leasuring	Instrumen	ts.						
4. To	understand	the Dema	nd Side M	lanagemer	nt (DSM).						
5. To	understand the	he cost effe	ectiveness f	or DSM.							
Course C	Dutcomes : At	fter succes	sful comp	letion of th	ne course, t	he student	will be ab	le to:			
CO 1	Understand	the impo	rtance of	energy au	udit and th	ne basic id	deas of co	onduction an			
	energy audi	t (BTL-2)									
CO 2	Analyze var	ious techni	ques of ene	ergy manag	ement and	conservatio	on (BTL-4)				
CO 3	Understand e	energy effic	cient metho	ds and pov	ver factor ir	nprovemen	t technique	es (BTL-2)			
CO 4	Analyze der	mand side	managem	ent conce	pts througl	n case stud	ly (BTL-4))			
CO 5	Understand	various Cos	st effective	ness test fo	r demand si	ide manage	ment progr	ams (BTL-2)			

	CO-PO Mapping													
CO		PO											PS	50
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PS02												
CO1	1		1	2		2			2	1			1	1
CO2	1	2	1	1		1	1		2		1		2	1
CO3		1		1		1							2	1
CO4	1	2				1			1				1	1
CO5	1	1	2			1			1				1	1
					1:	Low, 2	2-Med	ium, 3-	- High					

	COURSE CONTENT									
MODULE – 1	Basic principles of Energy Audit	12 Hrs								
Energy audit- definitions, concept, types of audit, energy index, cost index, pie charts, Sankey diagrams, load profiles, Energy conservation schemes-Energy audit of industries-energy saving potential, energy audit of process industry, thermal power station, building energy audit										
At the end of the	Module 1, students will be able to:									
1. Under	stand the concept of energy audit									
2. Under	stand the various Energy conservation schemes									
MODULE -2	Energy management	12 Hrs								
Energy manage Principles of ene controlling, pron Energy manage Energy manger,	Energy management-I Principles of energy management, organizing energy management program, initiating, planning, controlling, promoting, monitoring, reporting. Energy management-II Energy management-II									
At the end of the	Module 2, students will be able to:									
1. Conduct	energy management, energy audit and energy conservation measures.									
2. Understa	nd the basic principles of energy management									
3. Understa	3. Understand the need of energy management									
4. Evaluate	4. Evaluate energy audit results									
5. Illustrate	electrical load management techniques									
MODULE-3	MODULE-3 ENERGY MANAGEMENT FOR LIGHTING AND ENERGY 08 Hrs MOTORS 08 Hrs									

Good Lighting System Design and Practice, Lighting Control, Lighting Energy Audit Energy efficient motors, factors affecting efficiency, loss distribution, constructional details, characteristics - variable speed, variable duty cycle systems, RMS hp- voltage variation-voltage unbalance- over motoring- motor energy audit

At the end of the Module 4, students will be able to:

1. understand the characteristics of energy efficient motors

2. Implement energy efficient methods and power factor improvement techniques

MODULE-4 INTRODUCTION TO DEMAND SIDE MANAGEMENT 08 Hrs

Introduction to DSM, Concept of DSM, Benefits of DSM, Different Techniques of DSM – Time of Day Pricing, Multi-Utility Power Exchange Model, Time of Day Models for Planning. Load Management, Load Priority Technique, Peak Clipping, Peak Shifting, Valley Filling, Strategic Conservation, Energy Efficient Equipment. Management and Organization of Energy Conservation Awareness Programs.

At the end of the Module 5, students will be able to:

- 1. Analyze demand side management concepts through case study
- 2. Understand the load management

MODULE-5 ECONOMICS AND COST EFFECTIVENESS TESTS OF DSM 08 Hrs PROGRAMS 08 Hrs

Basic payback calculations, Depreciation, Net present value calculations. Taxes and Tax Credit – Numerical Problems. Importance of evaluation, measurement and verification of demand side management programs. Cost effectiveness test for demand side management programs - Ratepayer Impact Measure Test, Total Resource Cost, Participant Cost Test, Program Administrator Cost Test

At the end of the Module 6, students will be able to:

- 1. Analyze economic impacts of energy management and auditing
- 2. Understand various Cost effectiveness test for demand side management programs

Total hours: 48 hours

Term work:

Term work contains assignments, seminars and quiz

Content beyond syllabus:

1. Energy Instruments For Audit

Self-Study:

SNO	Торіс	СО	Reference
1	Energy	CO1	http://www.opexworks.com/KBase/Energy
	Audit		_Management/Energy_Audit_and
			_Management/Energy_Audit/Energy
			_Audit_Types_and_Methodology.htm
2	Overview of	CO2	https://beeindia.gov.in/sites/default/files/1Ch3.pdf
	energy		
	management		https://www.nrcan.gc.ca/sites/oee.nrcan.gc.ca
			/files/files/pdf/energy-audit-manual-and-tool.pdf
3	Energy	CO3	https://www.youtube.com/watch?v=T9Vmp3Qo8Mo
	management		
	for motors		
4	Demand	CO4	http://africa-toolkit.reeep.org/modules/Module14.pdf
	side		
	management		

5	Cost	CO5	https://www.youtube.com/watch?v=P4yfHQWYfLc
	effective		
	test of DSM		

- **1.**Industrial Energy Management Systems, Arry C. White, Philip S. Schmidt, David R. Brown, Hemisphere Publishing Corporation, New York, 1994.
- Fundamentals of Energy Engineering Albert Thumann, Prentice Hall Inc, Englewood Cliffs, New Jersey, 1984.

Reference Book(s):

- 1) Energy management by W.R. Murphy & G. Mckay Butter worth, Heinemann publications.
- 2) Energy management by Paul o" Callaghan, Mc-graw Hill Book company-1/e,1998
- 3) Energy efficient electric motors by John C. Andreas, Marcel Dekker Inc Ltd-2/e, 1995
- 4) Energy management hand book by W.C.Turner, john Wiley and sons

5). Energy management and good lighting practice: fuel efficiency- booklet12-EEO

Online Resources:

- 1. http://lab.fs.uni-lj.si/kes/erasmus/Energy%20Management%20Handbook.pdf
- 2. <u>https://www.bsr.org/reports/bsr-energy-management-handbook.pdf</u>

Web Resources:

1. <u>https://freevideolectures.com/</u>

2.<u>https://www.academia.edu/33324894/Energy_Management_Handbook_7th_Ed_Doty_and_</u> Turner_Fairmont_Press_2009--03-Oct-2009-.pdf?auto=download

NARAYANA ENGINEERING COLLEGE:GUDUR										
20EE4005		Al	DVANCED	POWER E	LECTRONI	CS		R2020		
	Н	ours / We	ek	Total	Credit		Max Marks			
	L	Т	Р	hrs	С	CIE	SEE	TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requisite: Power Electronics										
Course Objectives:										
1.	To explai	To explain the concepts of power electronic switches								
2.	To demonstrate the applications and analysis of switches in DC-DC converter and									
	various single phase converters									
3.	To analyze the operation of single phase, three phase and multipulse converters									
4.	To analyze the power quality improvement techniques									
5.	To analy	ze the allo	cations of I	FACTS dev	ices					
Course Ou	itcomes: A	After succe	essful com	pletion of	the course	, the stude	ent will be	able to:		
CO 1	Explain b	pasic Conc	ept of Swi	itches and	their contr	olling pro	cess (B-2)			
60.0	Demonstrate the device physics, Application and Analysis of Switches in DC-DC									
CO 2	converter	rs and Sing	gle Phase (Converter	(B-2)					
	Analyze	the operat	ion Single	Phase Co	nverter, Tl	ree Phase	Converter	r, Multipulse		
CO 3	Converter and Effect of Source Inductance and PWM Rectifiers (B-4)									
CO 4	Analyze	the Power	Quality In	nproveme	nt Techniq	ues in elec	ctrical syst	ems (B-4)		
CO 5	Analyze	the application	ations of F	ACTS De	vices in ele	ectrical sys	stem (B-4)			

	CO-PO Mapping														
	РО													PSO	
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
C01	2	2											2	3	
CO2	3	2											2	3	
CO3	3	2											2	3	
CO4	3	2	2										2	2	
CO5	3	2	2										2	3	
					1: Lov	<i>N</i> , 2-M	edium	1, 3- Hi	igh						

COURSE CONTENT											
MODULE – 1	MODULE - 1Advanced Solid State Devices10 Hours										
MOSFETs, IGBT, GTO, IGCT etc. Power modules, intelligent power modules, gating circuits.											
Thermal design, protection	on. Digital signal processors used in thei	r control.									
At the end of the Module 1, students will be able to: 1. Recall the basic concepts of Switching characteristics (BL-1) 2. Understand the controlling techniques of switches (BL-2)											
MODULE -2	DC – DC and Single Phase converters	10 Hours									
Non-isolated dc-dc conv	verters: Buck, boost, buck-boost, Cuk,	SEPIC, Zeta in DCM and CCM.									
Isolated dc-dc converters: Flyback, forward, Cuk, SEPIC, Zeta, half bridge, push-pull and bridge in											
DCM and CCM. Single-phase, single-stage converters (SSSSC), power factor correction at ac mains											
in these converters. Their	application in SMPS, UPS, welding and	l lighting systems.									

- 1. understand the concept of DC-DC conversion (BL-2)
- 2. explain the concept of single-pahse and single stage converters (BL-2)

MODULE-3	AC-DC Converters	10 Hours								
Single-phase improved	power quality ac-dc converters: Buck,	boost, buck-boost, PWM VSC								
(Voltage source converters), multilevel VSCs, PWM CSC (Current voltage source converters).										
Three-phase improved power quality ac-dc converters: VSC, multilevel VSCs, multipulse VSCs,										
PWM CSC (Current vol	PWM CSC (Current voltage source converters). Multipulse ac-dc converters: Diode and thyristor									
based converters	based converters									
At the end of the Module 3	3, students will be able to:									
1. Understand the cond	cept of power quality (BL-2)									
2. Apply the various co	nverters to improve the power quality (BL-	3)								
3. Analyze the various	ac-dc converters (BL-4)									
MODULE-4	Passive and Active Filters	10 Hours								
Power quality mitigation	n devices: Passive filters, active filters, hy	ybrid filters. DSTATCOM								
(Distribution static comp	pensator), DVR (Dynamic voltage restore	er) and UPQC (Universal power								
quality conditioner).										
At the end of the Module 4	4, students will be able to:									
1. Explain the concep	t of passive and active filters (BL-2)									
2. Analyze different ty	ypes of power quality mitigation devices (B	L-4)								
MODULE-5	FACTS Devices	08 Hours								
FACTS devices: TCR (7	Thyristor Controlled Reactor), TSC (Thyr	istor Switched Capacitors).								
STATCOM (Static Sync	chronous Compensator). SSSC (Static Se	ries Synchronous Compensator).								
UPFC (Unified Power Flow Controller), IPFC (Interline Power Flow Controller).										
At the end of the Module 5, students will be able to:										
1. Understand the concept of FACTS devices (BL-2)										
2. Analyze the operation of different types of FACTS Devices (BL-4)										
		Total hours: 48 Hours								

Term work:

Content beyond syllabus:

1. Advanced controlling techniques to improve Power Quality

Self-Study:

	S.NO	Module	Reference					
	1	Advanced Solid State Devices	https://youtu.be/XgY3HiBhHEE					
	2	DC – DC and Single Phase converters	https://www.youtube.com/watch?v=p5NZw5fUvgQ					
	3	AC-DC Converters	https://www.youtube.com/watch?v=JXJaRPXPwjQ					
	4	Passive and Active Filters	https://www.youtube.com/watch?v=EoPGgrMAAJo					

			https://www.youtube.com/watch?v=GVxY3nE5mO8&list=PLLy_2iUC	G
5	5	FACTS Devices	87AVyRAN4QwVQrC8vSg1vWa6	

1. Ned Mohan, Tore M. Undeland and William P. Robbins, "Power Electronics – Converters, Applications and Design", John Willey & sons, Inc., 3rd ed., 2003.

2. Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications", Prentice Hall of India, 3rd ed., 2009.

3. Narain G. Hingorani, Laszlo Gyugyi, "Understanding FACTS", IEEE Press.

Reference Book(s):

- 1. Derek A. Paice "Power Electronic Converter Harmonics Multipulse Methods for Clean Power", IEEE Press, 1996.
- 2. Muhammad H. Rashid , "Power Electronics Handbook", Elsevier, 3rd ed., 2011.
- 3. P.C.Sen, "Modern Power Electronics", S. Chand and Co. Ltd., New Delhi, 2000.
- 4. Vijay K. Sood, "HVDC and FACTS Controllers Applications of Static Converters in Power Systems", Kluwer Academic Publishers, Boston, 2004.
- 5. L. Umanand, "Power Electronics Essentials and Applications", Wiley India Ltd., 2009

Online Resources / Web References:

- 1. https://www.youtube.com/watch?v=MeOYUx07SCk
- 2. https://www.youtube.com/watch?v=ErMz2MI5DQo
- 3. https://www.youtube.com/watch?v=ohwGWysVuXU
- 4. https://www.academia.edu/38805211/Advanced_Power_Electronics_Converters_PWM_Converters_ Processing_AC_Voltages
- 5. https://www.electronicbo.com/2019/06/Advanced-Power-Electronics-Converters.html
- 6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
- 7. https://nptel.ac.in/courses/108/106/108106073/
- 8. https://www.youtube.com/watch?v=MeOYUx07SCk&list=PLUpFmz4G8ZyZx2fG5B_GRVIhTquy poAWZ
- 9. https://www.youtube.com/watch?v=ohwGWysVuXU
- 10. https://www.youtube.com/watch?v=0jevuayGmmU&list=PLLy_2iUCG87DzWK9cLYKxjH1LRAC xdEKi

	N	ARAYAN	IA ENGIN	IEERIN	G COLLE	GE:GUD	UR			
20EE4010		ADV	ANCED I	ELECTR	ICAL DR	IVES		R2020		
	H	ours / We	ek	Total	Credit	Max Marks				
	L	Т	Р	hrs	С	CIE SEE		TOTAL		
	3	0	0	48	3	40	60	100		
Pre-requis	site: Nil									
Course Ob	Course Objectives:									
1. To unde	rstand stea	dy state o	peration a	nd transier	nt dynamic	s of a mot	or load sys	stem.		
2. To acqu	ire knowle	edge of fu	zzy logic a	ind neural	network c	oncepts in	various di	rives		
Course Ou	itcomes: A	After succ	cessful co	mpletion	of the cou	rse, the st	udent will	be able to:		
CO 1	Analyze	the Power	electronic	converte	rs for elect	rical drive	s.(BL-4)			
CO 2	Analyze	the field	oriented co	ontrol of n	nachines.(l	BL-4)				
CO 3	Understa	nd the ve	ctor contro	l of electri	cal drives.	(BL-2)				
CO 4	Understa	nd the ser	nsor less co	ontrol of A	C drives.(BL-2)				
CO 5	Analyze	the direct	torque con	ntrol of Inc	luction Ma	chines.(B	L-4)			

	CO-PO Mapping														
CO	PO													PSO	
	PO											PO	PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	2	2	3		2								1	2	
CO2	2	2	3		2								1	2	
CO3	2	2	2		2								1	2	
CO4	2		3		2									2	
CO5	2	2	2		2									2	
				-	l: Lov	v, 2-M	lediun	1, 3- H	ligh						

COURSE CONTENT

MODULE – 1 (08 Hrs)

INTRODUCTION TO POWER CONVERTERS FOR ELECTRIC DRIVES

Switching converters and their applications to variable frequency drives - Power electronic converters for control of amplitude-AC variable frequency drives - Mathematical representation of switching functions- reduction of switching losses in practical switches. MATLAB simulation -study on 'D0Q' transformation in various frames of reference. Free acceleration characteristics of Induction motor from 'D0Q' model viewed from various reference frames

At the end of the Module 1, students will be able to:

- 1. Explain the switching converters ad their application.(BL-2)
- 2. Understand the Power electronic converters for control of drives.(BL-2)
- 3. Explain the characteristics of Induction motor from various reference frames. (BL-2)

MODULE -2 (10 Hrs)

FIELD ORIENTATED CONTROL

Field oriented control of induction machines - Theory – DC drive analogy.

- 1. Understand the field orientated control and its application. (BL-2)
- 2. Analyze the Field oriented control of induction machines. (BL-4)
- 3. Analyze the Field oriented control of DC drive. (BL-4)

MODULE-3 (10 Hrs)

VECTOR CONTROL

Vector control concept- Direct or Feedback vector control - Indirect or Feed forward vector control – Flux vector estimation - Space vector modulation control-PWM current control-MATLAB simulation direct & indirect vector control induction motor- closed loop speed control of VVVF PMAC motor drive & FPGA based closed loop control of BLDC motor drive.

At the end of the Module 3, students will be able to:

- 1. Understand the vector control concept. (BL-2)
- 2. Understand the MATLAB simulation direct & indirect vector of control induction motor. (BL-2).
- 3. Explain FPGA based closed loop control of BLDC motor drive. (BL-2)

MODULE-4 (10 Hrs)

SENSORLESS CONTROL OF AC DRIVES

Introduction to sensor less control of AC drives – Advantages – speed estimation methods-State synthesis method – model reference adaptive system – observer based techniques -MATLAB simulation model reference adaptive system for speed estimation.

At the end of the Module 4, students will be able to:

- 1. Understand the sensor less control of AC drives.(BL-2)
- 2. Explain the state synthesis method. (BL-2)
- 3. Understand the MATLAB simulation model reference adaptive system for speed estimation. (BL-2)

MODULE-5 (10 Hrs)

DIRECT TORQUE CONTROL

Direct torque control of Induction Machines – Torque expression with stator and rotor fluxes, DTC control strategy – optimum switching vector selection – reduction of torque ripple methods- adaptive control. MATLAB simulation-open loop control-DTC of induction motor drive-adaptive control.

At the end of the Module 5, students will be able to:

- 1. Understand the Direct torque control of Induction Machines. (BL-2)
- 2. Explain the Torque expression with stator and rotor fluxes.(BL-2)
- 3. Explain optimum switching vector selection.(BL-2)

Total hours: 48 hours

Content beyond syllabus:

1. GA based drives

Self-Study:

SNO	Торіс	CO	Reference
1	Reduction of switching	CO1	https://www.youtube.com/watch?v=7kGPLVXvsPk
	losses in practical		

		switches		
Ī	2	Field oriented control	CO2	https://www.youtube.com/watch?v=2jtk1_rcYYQ
		of induction machines		
	3	FPGA based closed	CO3	https://www.youtube.com/watch?v=V0XP3N5c2GY
		loop control of BLDC		
		motor drive		
	4	MATLAB simulation	CO4	https://www.youtube.com/watch?v=9W2CzT0wq3Q
		model reference		
		adaptive system for		
		speed estimation		
	5	DTC of induction	CO5	https://www.youtube.com/watch?v=mG7AxRkGrr8
		motor drive		

1. Bimal.K. Bose, "Power Electronics and Variable frequency drives", Standard Publishers Distributors, New Delhi, 2000.

2. Dubey G.K., "Power Semiconductor controlled drives", Prentice Hall inc, A division of Simon and Schester England cliffs, New Jersey, 1989.

Reference Book(s):

1. Murphy J.M.D, Turnbull, F.G, "Thyristor control of AC motor", Pergamon press, Oxford, 1988.

2. Sheperal, Wand Hully, L.N. "Power Electronic and Motor control" Cambridge University Press Cambridge, 1987.

3. Dewan, S. Slemon B., Straughen, A. G.R., "Power Semiconductor drives", John Wiley and Sons, NewYork, 1984.

Online Resources:

1. <u>https://doku.pub/documents/electric-drives-by-gk-dubey-59qge6y3vm0n</u> 2. https://nptel.ac.in/courses/108/104/108104011/

Web Resources:

1. <u>https://www.youtube.com/watch?v=6DctdwlDKhc&list=PLA5CA7D35114BA425</u> 2.<u>https://www.youtube.com/watch?v=WsDPqDqnpyw&list=PLuv3GM6gsE3UGP1cSOl1KuEX</u> <u>scGFdKXB</u>

	NARAYANA ENGINEERING COLLEGE:GUDUR												
20EE4015			HV	DC and FA	CTS			R2020					
	Н	ours / Wee	ek	Total	Credit		Max Mar	ks					
	L	Т	Р	hrs	С	CIE	HVDC	TOTAL					
	3	0	0	48	3	40	60	100					
Pre-requisite: Transmission and Distribution, Power Electronics and High voltage engineering													
Course Ob	jectives:												
1.	To introd	uce the ex	tra high v	oltage AC	and DC tra	nsmission							
2.	To introd	uce the H	VDC transr	mission sys	stem with	types, con	trol and pr	otection.					
3.	To discus	To discuss about the design factors of lines and cables.											
4.	To provide knowledge on FACTS controllers.												
5.	To introd	uce the re	active pov	ver contro	l techniqu	es.							
6.	To study	the charac	cteristics, r	nodelling	and opera [.]	ting schem	nes of diffe	rent types					
	of shunt	and series	switched	reactive p	ower gene	erating dev	vices.						
Course Out	tcomes: Aft	ter success	ful compl	etion of th	e course, tl	ne student	will be abl	e to:					
CO 1	Find the a	pplications	of differen	t types of H	IVDC links.	BL-2)							
CO 2	Apply con	verters for	HVDC trans	smission fo	r control of	converters	s.(BL-3)						
CO 3	Understar	nd the cond	ept of filte	rs to mitiga	ite harmoni	ics, concep	t of reactive	e power					
	requireme	ents.(BL-2)											
CO 4	Understan	d the work	ing princip	les of FAC	TS devices.	(BL-2)							
CO 5	Analyze tl	he perform	ance of Seri	ies, Shunt a	and combine	ed FACTS	controllers.	(BL-4)					

	CO-PO Mapping														
СО		PO												PSO	
	PO	PO											PSO	PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO1	3	2	2										3	2	
CO2	3		3										2	2	
CO3	2	2	2										2	2	
CO4	2	3	2										3	2	
CO5	2	2	3										3	2	
					1: Lo	w, 2-N	ledium	, 3- Hi	gh						

COURSE CONTENT												
MODULE – 1	MODULE – 1 Introduction 10Hrs											
Comparison of AC and DC transmission systems, application of DC transmission, types of DC links, typical layout of a HVDC converter station, HVDC converts, pulse number, analysis of Gratez circuit with and without overlap, converter bridge characteristics, equivalent circuits or rectifier and inverter configurations of twelve pulse converters.												
At the end of the Modu	ıle 1,	students will be able to:										
1. Explain the c	ompa	arison of HVDC and HV AC.(BL-2)										
2. Understand	the A	pplication of the HVDC Transmission.(BL-2)										
3. Understand	the	Characteristics of 6 pulse and 12 pulse converters.(BL-	2)									
MODULE -2 CONVERTER & HVDC SYSTEM CONTROL 10Hrs												
Principle of DC link control –Converters control characteristics- system control hierarchy, firing angle control, current and excitation angle control, starting and stopping of DC link.												

- 1. Understand the principle of DC link control.(BL-2)
- 2. Understand the Firing Angle Control for the Converters.(BL-2)
- 3. Explain the starting and stopping of DC link. (BL-2)

MODULE-3 HARMONICS, FILTERS AND REACTIVE POWER CONTROL

Introduction, generation of Harmonics, AC and DC Filters. Reactive power requirements in steady state, sources of reactive power, static VAR systems.

POWER FLOW ANALYSIS IN AC/DC SYSTEMS: Modeling of DC/AC converts, controller equations solutions of AC/DC load flow- simultaneous method, sequential method.

At the end of the Module 3, students will be able to:

- 1. Understand the Basics generation of harmonics.(BL-2)
- 2. Explain the calculation of voltage & Current harmonics. (BL-2)
- 3. Explain the types of AC filters.(BL-2)

MODULE-4	INTRODUCTION TO FACTS	10Hrs
----------	-----------------------	-------

Flow of power in AC parallel paths and meshed systems, basic types of FACTS controllers, brief description and definitions of FACTS controllers.

STATIC SHUNT COMPENSATION: Objectives of shunt compensation, methods of controllable VAR generation, static VAR compensators, SVC and STATCOM, comparison between SVC and STATCOM.

At the end of the Module 4, students will be able to:

- 1. Explain the basic principles, characteristics of different types of FACTS controllers. (BL-2)
- 2. Explain the new methods adopted in power system control. (BL-2)
- 3. Understand the static shunt compensation. (BL-2)

MODULE-5 STATIC SERIES COMPENSATORS

Objectives of series compensation, variable impedance type- thyristor switched series capacitors (TCSC), and switching converter type series compensators, static series synchronous compensator (SSSC)- power angle characteristics-basic operating control schemes.

At the end of the Module 5, students will be able to:

- 1. Understand the objectives of series compensation of power systems. (BL-2)
- 2. Understand the power angle characteristics. (BL-2)
- 3. Explain the basic operating control schemes. (BL-2)

Total hours: 48 hours

8Hrs

10Hrs

Term work:

1. Develop HVDC Transmission system using mat lab software

2. The steady-state and transient performance of a 12-pulse, 1000 MW (500 kV-2kA) 50/60 Hz HVDC transmission system.

3. FACTS and HVDC Technologies for the Development and Enhancement of Future Power Systems.

4.Use of HVDC and FACTS which can be applied in transmission and distribution systems

5. Simulation of various applications using FACTs devices.

6. AC-DC Power flow analysis using FACTS devices.

7. Stabilty of Power Transmission Capability of HVDC system using facts controllers.

8. Design of DC breakers modelling using MATLAB

9. Design of Power control in HVDC using MATLAB

10. Modelling and digital simulation of STATACOM using MATLAB

Content beyond syllabus:

1. Design of real-time industrial projects.

2. Application of various compensation techniques in power system.

Self-Study:

Contents to promote self-Learning:

SNO	Торіс	Reference
1	Introduction of DC power	https://www.cet.edu.in/noticefiles/229_HVDC_NOTE.pdf
	transmission	
2	Analysis of HVDC	https://aits-tpt.edu.in/wp-content/uploads/2018/08/HVDC-
	converters	2-Unit.pdf
3	Control of HVDC converter	https://sari-
	and systems	energy.org/oldsite/PageFiles/What_We_Do/activities/HVDC_
		Training/Presentations/Day_2/3.HVDC_CONTROLS.pdf
4	Introduction To Facts	https://nptel.ac.in/courses/108/107/108107114/
5		https://nptel.ac.in/courses/108/107/108107114/
	Static Series Compensators	

Text Book(s):

1. Padiyar, K. R., "HVDC power transmission system", New Age International (P) Ltd., New Delhi, Second Edition, 2010.

 Edward Wilson Kimbark, "Direct Current Transmission", Vol. I, Wiley interscience, New York, London, Sydney, 1971.

3. Rakosh Das Begamudre, "Extra High Voltage AC Transmission Engineering", New Age International (P) Ltd., New Delhi, 1990.

 R.MohanMathur,RajivK.Varma, "Thyristor–Based Facts Controllers for Electrical Transmission Systems", IEEE press and JohnWiley&Sons,Inc,2002.

5.Narain G.Hingorani, "Understanding FACTS-Concepts and Technology of Flexible AC Transmission Systems", Standard Publishers Distributors,Delhi-110006,2011.

Reference Book(s):

1. Direct Current Transmission, Vol. 1, E. W. Kimbark, Wiley, 1971

High Voltage Direct Current Transmission, Jos Arrillaga, IEE Power and Energy series 29, 2nd Edition, 1998

3. EHV-AC, HVDC Transmission & Distribution Engineering, S Rao, Khanna Publishers, 4 th Edition, 2008.

4.K.R.Padiyar,"FACTS Controllersin Power Transmission and Distribution", New Age International (P) Limited, Publishers, New Delhi, 2008

5. A.T.John, "FlexibleA.C.TransmissionSystems", InstitutionofElectricalandElectronic Engineers (IEEE), 1999.

 V.K.Sood, HVDC and FACTS controllers
–Applications of Static Converters in Power System, APRIL2004,KluwerAcademic Publishers,2004. Online Resources/ Web Resources:

1. <u>https://nptel.ac.in/courses/108/104/108104013/</u>

2. <u>http://www.ee.uidaho.edu/ee/power/ee</u>

3. https://www.powereng.com/our-services/power-delivery/hvdc-fact/

4.<u>https://en.wikipedia.org/wiki/High-voltage_direct_current</u>

5. https://www.ti.com/lit/an/sloa289a/sloa289a.pdf?ts=1592377419880&ref_url=https%253A%252F%2 www.google.co.in%252F

7. https://pv-magazine-usa.com/2020/03/31/hvdc-transmission-helps-investors-but-may-not-help-solar/

8.<u>http://www.renewableenergyfocus.com/view/3567/hvdc-transmission-from-energy-source-to-</u>consumer/

NARAYANA ENGINEERING COLLEGE:GUDUR											
20EE4020	ADVANCED POWER CONVERTERS R2020										
	Н	ours / Wee	ek	Total	otal Credit Max Ma			rks			
	L	Т	Р	hrs	С	CIE SEE		TOTAL			
	3	0	0	48	3	40	60	100			
Pre-requi	site: Pow	er Electro	nics								
Course Ob	ojectives:										
1.	To analyze the dc-dc voltage regulators										
2.	To describe the operation of resonant converters										
3.	To describe the operation of multi level converters and multi pulse converters with										
	switching strategies for high power										
4.	To understand Principle of Operation DC power supplies										
5.	To analyze the AC power supplies										
Course Ou	urse Outcomes : After successful completion of the course, the student will be able to:										
CO 1	Evaluate different dc-dc voltage regulators(BL-3)										
CO 2	Analyze resonant converters (BL-3)										
CO 3	Evaluate various multi-level inverter configurations (BL-3)										
CO 4	Select appropriate phase shifting converter for a multi-pulse converter(BL-3)										
CO 5	Analyze the various DC power supplies (BL-3)										

CO-PO Mapping														
	PO									PSO				
CO	PO	PO	PO	PSO	PSO									
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2											2	3
CO2	3	2	2										3	3
CO3	1	1	1										2	3
CO4	2	2											2	2
CO5	1	3											2	3
1: Low, 2-Medium, 3- High														

COURSE CONTENT									
MODULE – 1	Switching Voltage Regulators 10Hours								
ntroduction; Linear power supply (voltage regulators); Switching voltage regulators; Review of basic lc-dc voltage regulator configurations -Buck, Boost, Buck-Boost converters and their analysis for continuous and discontinuous mode; Other converter configurations like Flyback converter, Forward converter, Half bridge, Full bridge configurations, Push-pull converter; Design criteria for SMPS; Multi- butput switch mode regulator. At the end of the Module 1, students will be able to:									
1. Recall the basic concepts of voltage regulators (BL-1) 2. Understand the other converter configurations (BL-2)									
3. Evaluate the different dc voltage regulators (BL-3)									
MODULE -2	Resonant Converters	10 Hours							
Introduction, Need of resonant converters, Classification of resonant converters, Load resonant converters, Resonant switch converters, zerovoltage switching dc-dc converters, zero current switching dc-dc converters, clamped voltage topologies.									
At the end of the Module 2, students will be able to:

- 1. understand the concept of resonant conversion(BL-2)
- 2. compare & analyze the zero voltage and current switching dc-dc converters(BL-2)

MODULE-3 Multi-level converters 10 Hours								
Need for multi-level inverters, Concept of multi-level, Topologies for multi-level: Diode Clamped, Flying								
capacitor and Cascaded H-bridge multilevel Converters configurations; Features and relative								
comparison of these configurations applications, Introduction to carrier based PWM technique for								
nulti-level converters.								
At the end of the Module 3, students will be able to:								
1. Understand the conc	1. Understand the concept of multi-level (BL-2)							
2. Evaluate various mu	lti-level inverter configurations (BL-3)							
3. Understandcarrier b	ased PWM technique for multi-level convert	ters (BL-2)						
MODULE-4	Multipulse Converters	08 Hours						
Concept of multi-pulse, Co	onfigurations for m-pulse (m=12,18,24) c	onverters, Different phase shifting						
transformer (Υ-Δ1, Υ-Δ2, Υ	7-Z1 and Y-Z2) configurations for multi-puls	e converters, Applications.						
At the end of the Module 4	, students will be able to:							
1. Explain the concept	t of multi-pulse (BL-3)							
2. Analyze different p	hase shifting transformer configurations for	multi-pulse converters(BL-4)						
3. Understand the app	plications of multipulse converters(BL-2)							
MODULE-5	DC & AC Power Supplies	10 Hours						
DC Power Supplies – Ty	pes – Switched Mode DC Power Supplies	– Fly Back Converter –Forward						
Converter – Push-Pull Con	nverter – Half Bridge Converter – Full Bridg	ge Converter –Resonant DC Power						
Supplies – Bidirectional Power Supplies – Applications –AC Power Supplies – Types – Switched Mode								
Dupplies Dialicetional I	ower Supplies – Applications –AC Power S	upplies – Types – Switched Mode						
Ac Power Supplies – Res	sonant AC Power Supplies – Bidirectional	upplies – Types – Switched Mode Ac Power Supplies – Multistage						
Ac Power Supplies – Res Conversions – Control Ci	sonant AC Power Supplies – Bidirectional Frcuits – Power Line Disturbances – Power	upplies – Types – Switched Mode Ac Power Supplies – Multistage er Conditioners – Uninterruptible						
Ac Power Supplies – Res Conversions – Control Ci Power Supplies – Applicat	sonant AC Power Supplies – Applications –AC Power S sonant AC Power Supplies – Bidirectional frcuits – Power Line Disturbances – Powe	upplies – Types – Switched Mode Ac Power Supplies – Multistage er Conditioners – Uninterruptible						
Ac Power Supplies – Res Conversions – Control Ci Power Supplies – Applicat At the end of the Module 5	sonant AC Power Supplies – Applications –AC Power S sonant AC Power Supplies – Bidirectional arcuits – Power Line Disturbances – Powe sions s, students will be able to:	upplies – Types – Switched Mode Ac Power Supplies – Multistage er Conditioners – Uninterruptible						
Ac Power Supplies – Res Conversions – Control Ci Power Supplies – Applicat At the end of the Module 5 1. Understand the swit	Sonant AC Power Supplies – Applications –AC Power S sonant AC Power Supplies – Bidirectional frcuits – Power Line Disturbances – Power cions s, students will be able to: ched mode dc power supplies (BL-2)	upplies – Types – Switched Mode Ac Power Supplies – Multistage er Conditioners – Uninterruptible						
Ac Power Supplies – Res Conversions – Control Ci Power Supplies – Applicat At the end of the Module 5 1. Understand the swit 2. Analyze the types of	ower Supplies – Applications –AC Power S sonant AC Power Supplies – Bidirectional frcuits – Power Line Disturbances – Powe tions 5, students will be able to: ched mode dc power supplies(BL-2) f dc power supplies (BL-3)	upplies – Types – Switched Mode Ac Power Supplies – Multistage er Conditioners – Uninterruptible						
Ac Power Supplies – Res Conversions – Control G Power Supplies – Applicat At the end of the Module 5 1. Understand the swit 2. Analyze the types of 3. Analyze Bidirection	ower Supplies – Applications –AC Power S sonant AC Power Supplies – Bidirectional frcuits – Power Line Disturbances – Power tions 5, students will be able to: ched mode dc power supplies(BL-2) f dc power supplies (BL-3) al Power Supplies (BL-3)	upplies – Types – Switched Mode Ac Power Supplies – Multistage er Conditioners – Uninterruptible						
Ac Power Supplies – Res Conversions – Control Ci Power Supplies – Applicat At the end of the Module 5 1. Understand the swit 2. Analyze the types of 3. Analyze Bidirection	ower Supplies – Applications –AC Power S sonant AC Power Supplies – Bidirectional frcuits – Power Line Disturbances – Power tions 5, students will be able to: ched mode dc power supplies (BL-2) f dc power supplies (BL-3) al Power Supplies (BL-3)	upplies – Types – Switched Mode Ac Power Supplies – Multistage er Conditioners – Uninterruptible Total hours: 48 Hours						

Term work:

- 1. Evaluate the performance and operating modes of SLR/PLR dc-dc converter with the change in switching frequency.
- 2. Simulate/Design a circuit for a Buck Converter with ZVS/ZCS to regulate the output voltage Vo with a given input voltage Vin.
- 3. Carrier based Sine PWM control of a CHB multilevel inverter and study of harmonic spectrum.
- 4. Study the operation and performance of second order converters like Buck-Boost, Fly back, forward converters etc.
- 5. Study the operation and performance of fourth order converters like C'uk or Sepic converters
- 6. Study of harmonic spectrum for 12 and 18 pulse converters.
- 7. Design based Problems (DP)/Open Ended Problem: Course coordinator can assign the design based problem/open ended problem.
- 8. Major Equipment: Simulation software like MATLAB, PSIM, Scilab, Power Electronic Converters, CRO/DSO, meters, Current/Voltage Probes, Isolation transformer etc. as demanded by the course.

Content beyond syllabus:

1.Advanced multilevel converters

Self-Study:

Contents to promote self-Learning:

C	Solitents to promote sen-learning.					
	S.NO	Module	Reference			
	1	Switching Voltage Regulators	https://www.youtube.com/watch?v=Q0E-ZAsqzKE			
	2	Resonant	https://www.youtube.com/watch?v=53avT03BYnI			
	2	Converters				
	2	Multi-level	https://www.youtube.com/watch?v=J3iEhAtcwZs			
	3	converters				
	1	Multipulse	https://www.youtube.com/watch?v=cqT6oOh3ggc			
	4	Converters				
	5	DC Power Supplies	https://www.youtube.com/watch?v=flAETm0RreY			
	6	AC Power Supplies	https://www.youtube.com/watch?v=DwiBp-Oohvs			

Text Book(s):

1. Ned Mohan, Tore M. Undeland and William P. Robbins, "Power Electronics – Converters, Applications and Design", John Willey & sons, Inc., 3rd ed., 2003.

2. Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications", Prentice Hall of India, 3rd ed., 2009.

3. Bin Wu, "High Power Converters and AC Drives", John Willey & sons, Inc., 2006.

Reference Book(s):

- 1. Derek A. Paice "Power Electronic Converter Harmonics Multipulse Methods for Clean Power", IEEE Press, 1996.
- 2. Muhammad H. Rashid , "Power Electronics Handbook", Elsevier, 3rd ed., 2011.
- 3. P.C.Sen, "Modern Power Electronics", S. Chand and Co. Ltd., New Delhi, 2000.
- 4. Vijay K. Sood, "HVDC and FACTS Controllers Applications of Static Converters in Power Systems", Kluwer Academic Publishers, Boston, 2004.
- 5. L. Umanand, "Power Electronics Essentials and Applications", Wiley India Ltd., 2009

Online Resources / Web References:

- 1. https://www.youtube.com/watch?v=MeOYUx07SCk
- 2. https://www.youtube.com/watch?v=ErMz2MI5DQo
- 3. https://www.youtube.com/watch?v=ohwGWysVuXU
- 4. https://www.academia.edu/38805211/Advanced_Power_Electronics_Converters_PWM_Converters_ Processing_AC_Voltages
- 5. https://www.electronicbo.com/2019/06/Advanced-Power-Electronics-Converters.html
- 6. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/
- 7. https://nptel.ac.in/courses/108/106/108106073/
- 8. https://www.youtube.com/watch?v=MeOYUx07SCk&list=PLUpFmz4G8ZyZx2fG5B_GRVIhTquy poAWZ
- 9. https://www.youtube.com/watch?v=ohwGWysVuXU
- 10. https://www.youtube.com/watch?v=0jevuayGmmU&list=PLLy_2iUCG87DzWK9cLYKxjH1LRAC xdEKi

NARAYANA ENGINEERING COLLEGE:GUDUR								
20EE4025	ADVANCED POWER SEMICONDUCTOR DEVICES AND PROTECTION R2020							
	Hours / Week			Total	Total Credit Max Ma			arks
	L	Т	Р	hrs	С	CIE	SEE	TOTAL
	3	0	0	48	3	40	60	100
Pre-requis	site: Revie	w of intro	luctory co	ncepts of p	ower semi	conductor	devices	
Course Ob OBJECTIVI	Course Objectives: OBJECTIVES:							
controlann	lications	sciiicolluu		. sti uctui c	s ioi aujusi	able speed		
 2. To understand the static and dynamic characteristics of current controlled powersemiconductor devices 3. To understand the static and dynamic characteristics of voltage controlled powersemiconductor devices 4. To enable the students for the selection of devices for different power electronicsApplications 5. To understand the control and firing circuit for different devices. 								
Course Ou	Course Outcomes : After successful completion of the course, the student will be able to:						able to:	
CO 1	1 Analyze power switching devices (BL-4)							
CO 2	Design of current controlled devices and their parameters(BL-3)							
CO 3	Analyze the voltage controlled devices and their parameters (BL-2)							
CO 4	Understand new power semiconductor devices(BL-2)							
CO 5	Design of protecting circuit(BL-3)							

CO-PO Mapping														
	PO PSO						50							
CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2											2	2
CO2	3	2	2										2	2
CO3	3	2											2	2
CO4	3	2											2	2
CO5	3	2	2										2	2
1: Low, 2-Medium, 3- High														

COURSE CONTENT

MODULE 1	
MODULE – 1	

POWER SWITCHING DEVICES

10**Hours**

Power switching devices overview – Attributes of an ideal switch, application requirements,circuit symbols; Power handling capability – (SOA); Device selection strategy – On-state andswitching losses – EMI due to switching - Power diodes - Types, forward and reverse characteristics, switching characteristics – rating.

At the end of the Module 1, students will be able to:

1. Understand the Power switching devices overview(BL-2)

2. Analyze the Device selection strategy (BL-3)

3. Analyze the Power diodes (BL-3)

MODULE -2	CURRENT CONTROLLED DEVICES		10 Hours			
BJT's – Construction, stat second breakdown; - Th transistor analogy – conc grade and other types; se dynamic models of BIT Th	ic characteristics, switching characteristics; Negativ hyristors – Physical and electrical principle under ept of latching; Gate and switchingcharacteristics; or eries and paralleloperation; comparison of BJT and vristors- Basics of GTO, MCT, FCT, RCT	e temper erlyingop converter Thyristor	aturecoefficient and erating mode, Two grade and inverter - steady state and			
At the end of the Module 2	2. students will be able to:					
1. Analyze the switch	ning characteristics of BIT(BL-3)					
2 Analyze the Two t	ransistor analogy (BL-3)					
3. Understand the ba	sics of thyristors (BL-3)					
MODULE-3	VOLTAGE CONTROLLED DEVICES		10 Hours			
Power MOSFETs and IGB switching characteristics,	Ts – Principle of voltage controlled devices, construsted steady state and dynamic models of MOSFET and IGI	uction, ty 3Ts -and	pes,static and IGCT			
At the end of the Module 3 1. Understand the principl 2. Analyze the switchin	8, students will be able to: le of voltage controlled devices (BL-2) g characteristics of MOSFET & IGBT (BL-3)					
MODULE-4	NEW SEMICONDUCTOR MATERIALS FOR DEVIC	ES	10 Hours			
New semiconductor mate thyristor (IGCT) - Compar	erials for devices – Intelligent power modules- Interior is all power devices.	gratedgat	e commutated			
At the end of the Module 4	, students will be able to:					
1. Understand the In	telligent power modules(BL-2)					
2. Analyze the Integr	atedgate commutated thyristor(BL-3)					
3. Compare all powe	er devices(BL-2)					
MODULE-5	FIRING AND PROTECTING CIRCUITS		08 Hours			
Necessity of isolation, pulse transformer, optocoupler – Gate drives circuit: SCR, MOSFET,IGBTs and base driving for power BJT Over voltage, over current and gate protections;Design of snubbers.Heat transfer – conduction, convection and radiation; Cooling – liquid cooling, vapour – phase cooling						
At the end of the Module 5	, students will be able to:	0				
1. Understand the necessity of isolation (BL-2)						
2. Analyze the Gat	te drives circuit(BL-3)					
3. Understand the	design of snubbers(BL-2)					
	Tota	l hours:	48 hours			
			1			

Term work:

- 1. Study of design of SiC MOSFETs
- 2. Tabulate the details of SCRs of different ratings
- 3. Derivation and explanation of transient thermal impedance of SCR
- 4. Study of thermal design of SCR with derivations
- 5. Study and explain paper on the state of the art and future trends of power semiconductors

Content beyond syllabus:

Protection against external & internal over voltages.

Self-Study:

Contents to promote self-Learning:

S.NO	Module	Reference
1	Power Switching Devices	https://www.youtube.com/watch?v=7XsuRUXF4wE
2	Current Controlled Devices	https://www.youtube.com/watch?v=5Jf_WWt-5vg
3	Voltage Controlled Devices	https://www.youtube.com/watch?v=lzwqcMvuYxU
4	New Semiconductor Materials For Devices	https://www.youtube.com/watch?v=88lo7MgCpNo
5	Firing And Protecting Circuits	https://www.youtube.com/watch?v=XyuY8OgMQL4

Text Book(s):

1. B.W Williams 'Power Electronics Circuit Devices and Applications'..

2. Rashid M.H., " Power Electronics Circuits, Devices and Applications ", Prentice Hall India, Third Edition, New Delhi, 2004

3. MD Singh and K.B Khanchandani, "Power Electronics", Tata McGraw Hill, 2001.

4. Mohan, Undeland and Robins, "Power Electronics – Concepts, applications and Design, John Wiley and Sons, Singapore, 2000.

5. Joseph Vithayathil, Power Electronics: Principles and Applications, Delhi, Tata McGraw-Hill, 2010.

Reference Book(s):

1. Advanced power electronics converters by Euzeli dos santos, Edison R. da silva.

2. Fundamentals of Power Semiconductor Devices by B. JayanthBaliga, Springer Press, 2008.

3. Power Semiconductor Devices and Circuits, Jaecklin, A.A.

4. Fundamentals of Power Semiconductor Devices, **Baliga**, B. Jayant

Online Resources/ Web References:

1.<u>https://www.amazon.in/Power-Electronics-Drives-Advanced-Applications-</u>ebook/dp/B086H4Z9WY

<u>https://www.pdfdrive.com/25-advanced-power-semiconductor-devices-apsd-e456994.html</u>
 <u>https://www.ttiinc.com/content/ttiinc/en/resources/product-</u>

types/discretes.html?utm=1267&channel=ppc&gclid=CjwKCAjw1K75BRAEEiwAd41h1AEeMfdQ65z0 DUsEWQSBV_cFEI5VwuQnFLxopFizjnXDYRY4iPtUoRoCkAEQAvD_BwE

4. http://site.iugaza.edu.ps/malramlawi/files/RASHID_Power_Electronics_Handbook.pdf

5.<u>https://www.youtube.com/watch?v=h0Y9jDKqScQ&list=PLgMDNELGJ1CaNcuuQv9xN07ZWkXE-</u> wCGP

6.<u>https://www.youtube.com/watch?v=m-uY4fja_Jw&list=PLOzRYVm0a65dVYOA7_3-N67Xu1NIrLnR0</u>

7. <u>https://www.youtube.com/watch?v=-YgHdIqkbs0</u>

8. <u>https://www.youtube.com/watch?v=5-uQ4rLlWPE</u>